RELAÇÃO ENTRE PARÂMETROS DE RUGOSIDADE OBTIDOS POR MICROSCÓPIA DE FORÇA ATÔMICA E POR MICROSCÓPIA ELETRÔNICA DE VARREDA

Rubens Bernardes Filho1,2, Odílio B.G. Assis1, José D.C. Pessoa1
1 EMBRAPA Instrumentação Agropecuária
Rua XV de novembro, 1452 - C.P. 741 - CEP 13560-970 São Carlos, SP
e-mail: rubens@cnpidia.embrapa.br
2 Instituto de Química de São Carlos - IQSC/USP
13560-970 São Carlos, SP

Palavras chave: Rugosidade, análise superficial, microscópio de força atômica, MEV

RESUMO

Neste trabalho dados obtidos por microscopia de força atômica (AFM) e por microscopia eletrônica de varredura (MEV) referentes à rugosidade de uma superfície cerâmica são analisados e comparados numericamente. Linhas em tons de cinza correspondentes à feixe de elétrons secundários retroespalhados, obtidas na análise por MEV, são normalizadas pela correspondente altura dos picos superficiais medidos por AFM. Os dados são comparados em termos de valores da rugosidade média Rq e da rugosidade média quadrática Ra (RMS), apresentando boa concordância, com desvios não superiores a 15% entre ambas as técnicas. Os resultados apontam para a validade da metodologia proposta.

ABSTRACT

In this work data from atomic force microscopy (AFM) and scanning electron microscopy (SEM) concerning a ceramic surface roughness are analyzed and numerically compared. Gray scale lines corresponding to secondary backscattered electrons obtained by SEM, are normalized by means of the correspondent maximum height measured directly by AFM. The comparisons are carried out in terms of arithmetic average roughness Rq and by Ra roughness, presenting good concordance with numerical deviation not exceeding 15% between both techniques. The results point to the validate the proposed methodology.

1. INTRODUÇÃO

As condições superficiais são responsáveis por uma série de comportamentos físico-químicos em materiais de interesse à engenharia. Propriedades magnéticas, atividade química, resistência à corrosão, tensão capilar e grau de molhamento são apenas alguns dos aspectos diretamente relacionados a uma superfície e que nem sempre são de estabelecimento e/ou medida triviais. A rugosidade, embora de fácil determinação, é de considerável relevância pois apresenta relação direta com as demais propriedades físicas superficiais de um sólido.

Para a avaliação da rugosidade, o instrumento mais empregado em nível industrial é o perfilômetro mecânico. Este consiste de um sistema de operação em modo contato, onde uma ponta de diamante exerce pressão contínua sobre uma superfície em movimento. O deslocamento da ponta gera linhas topográficas correspondente ao perfil da superfície analisada, permitindo assim a medida da rugosidade de forma gráfica e linear1.

O AFM (atomic force microscope), sistema da nova geração de microscópios de varredura de probes, emprega princípio similar de funcionamento, embora em diferentes graus de interação, apresentando uma substancial gama de aplicações no estudo de superfícies2. No sistema de microscopia de força atômica uma agulha é localizada na extremidade de uma haste delgada, espelhada e flexível (cantilever) sobre a qual é incidido feixe de laser, e refletido sobre sensores óticos que estabelecem uma posição de referência. O sistema de varredura faz uso de uma base confecionada em cerâmica piezoelétrica, sobre a qual é posicionada a amostra. Por um circuito de realimentação a amostra é movimentada fazendo com que o acompanhamento da agulha desloque o feixe luminoso gerando linhas correspondentes ao perfil em análise. A Figura 1 apresenta o esquema básico do AFM3. O princípio morfiz do microscópio de força atômica, trabalhando em modo contato, é a repulsão eletrostática entre os elétrons da superfície da amostra e os da agulha. O sistema de realimentação controla a altura da ponta em relação à amostra utilizando a força de interação eletrostática como referência para manter a distância constante durante o processo de varredura, resultando desta interação o perfil topográfico4.

Embora o microscópio de força atômica (AFM) já seja sem dúvida um instrumento de considerável eficiência no levantamento topográfico e na revelação de detalhes superficiais em escala nanométrica, é contudo um sistema ainda em aperfeiçoamento no que diz respeito à geração de imagem com contraste e qualidade. Por outro lado, o microscópio eletrônico de varredura (MEV), que tem sido
extensivamente empregado na análise microestrutural de materiais, gera imagens de alta resolução, embora apresente parcos recursos de análise superficial. Ambos os sistemas permitem análises complementares, embora sem relação direta. Pelo MEV é possível o levantamento de linhas em tons de cinza, correspondente a intensidade de elétrons secundários retroespalhados, os quais uma vez calibrados apresentam correspondência qualitativa com as condições superficiais. A dificuldade do estabelecimento de uma relação quantitativa a partir dessas linhas geradas pelo MEV reside na inexistência de referência numérica absoluta a ser atribuída para a graduação da escala de cinzas, correspondendo assim as alturas entre picos da superfície varrada.

As linhas geradas pelo MEV foram digitalizadas em 255 tons de cinza onde a máxima intensidade foi numericamente atribuída ao máximo Z estabelecido pelo AFM, ou seja correspondendo numericamente à máxima altura detectada na área varrida pela ponta do AFM. Empregou-se software TOPOSPM v. 3.06.06, para estabelecimento de valores característicos de rugosidade via AFM. O tratamento numérico consistiu em, uma vez normalizado as alturas, estabelecer os valores médio de rugosidade ao longo dos diversos perfis e comparar os resultados por ambas as técnicas.

3. RESULTADOS E DISCUSSÃO
3.1 Conceitos Básicos da Rugosidade

O volume de irregularidades mensuráveis em uma superfície gera o conceito de rugosidade. Em um sentido amplo, a rugosidade pode ser definida como a máxima distância entre picos e vales encontrados em um perfil, como ilustrado na Figura 2.

Figura 2 - Características superficiais de um sólido

O descritor estatístico mais empregado no conceito de rugosidade é o valor médio dos desvios das alturas dos diferentes pontos da topografia em relação à altura média dos pontos, ou seja:

\[R_s = \frac{1}{N} \sum_{i=1}^{N} |Z_i - Z_m| \]

(1)

onde,

\[Z_m = \frac{1}{N} \sum_{i=1}^{N} Z_i \]

(2)

Z_m representa a altura média dos pontos da amostra e Zi altura de cada ponto da amostra, ou seja, fisicamente a rugosidade representa o quão dispersos estão os pontos que compõem a superfície de uma determinada amostra.

Figura 1 – Esquema básico do Microscópio de Força Atômica.

A normalização numérica dessas intensidades é o propósito deste trabalho, onde estabelece-se uma correspondência numérica entre as alturas obtidas por AFM e os níveis de cinza correspondentes às intensidades da imagem de MEV de uma superfície.

2. MATERIAIS E MÉTODOS

Amostras de alumina comercial porosa (tamanho médio de poros = 1 μm) foram cortadas com faces paralelas planas, nas dimensões de 50 X 50 X 50 mm e sequencialmente analisadas por ambos sistemas. Seis linhas de perfis foram aleatoriamente obtidas pelo AFM (TopoMetrix Discover TMX 2010). Da mesma forma seis linhas geradas por elétrons retroespalhados foram aleatoriamente obtidas por varredura eletrônica (Leica-Cambridge).

Para o AFM utilizou-se agulha do tipo “super-tip”, apropriada à varredura em superfície de baixa regularidade (mod. 1700 – Topometrix).
Se considerarmos \(N \) alturas onde cada altura pode ser expressa em função da distância, em uma dimensão, podemos colocar \(R_a \) como:

\[
R_a = \frac{1}{L} \int_{x=0}^{L} |F(x)| dx
\]

(3)

onde \(L \) é o comprimento varrido projetado, como ilustrado na Figura 3.

![Figura 3 - Perfil superficial estabelecido como função \(F(X) \) da distância \(L \), como expresso pela equação 3.](image)

Subsequentemente, o desvio médio quadrático, ou seja a rugosidade RMS, pode ser calculada como:

\[
R_q = \left(\frac{1}{L} \int_{x=0}^{L} F^2(x) dx \right)^{1/2}
\]

(4)

Estas são as equações básicas utilizadas na caracterização da rugosidade de uma superfície.

3.2 Comparação entre dados do AFM e do MEV

A Figura 4 apresenta o aspecto da cerâmica em imagem obtida por microscopia eletrônica de varredura. Na figura, uma linha de perfil é aleatoriamente traçada apresentando as amplitudes correspondentes a intensidade de elétrons espalhados. O detector do MEV atribui à maior incidência a cor branca, definindo qualitativamente o perfil da linha analisada.

![Figura 4 - Fotomicrografia MEV da superfície cerâmica e linha de perfil de elétrons retroespalhados, cujas intensidades correspondem a tons de cinza.](image)

Ao atribuir a altura máxima (branco) correspondente ao máximo \(Z \) detectado pelo AFM na mesma superfície, a linha de intensidades passa a assumir a variação numérica da altura \(Y \) em função da distância \(L \) varrida, estabelecendo uma função com os parâmetros ilustrados na Figura 3. Isto permite a associação de valores quantitativos através das equações (3) e (4).

A Figura 5 apresenta o aspecto da superfície da mesma cerâmica, obtida pelo varredura por AFM, sem efeito de sombreamento (a), e sua projeção tridimensional direta (b). Embora a agulha do tipo “super tip” seja indicada à varredura de regiões de irregularidades acentuadas, por possuir uma geometria que possibilite um melhor acompanhamento da topografia comparativamente aos demais tipos de agulhas, ainda assim existem limitações geométricas que impedem que esta mapeie com fidelidade a totalidade da superfície da amostra. Esta impossibilidade é um dos fatores geradores de artefatos artefatos não distinguíveis pelo fotodetector, gerando um resultado gráfico final como características reais da superfície varrida.

Essas limitações têm sido amplamente estudadas e devem ser levadas em considerações em interpretações e análises. Como neste trabalho o objetivo é apenas o de normalizar as alturas máximas obtidas por ambas as técnicas, essas interações são supostas como erros inerentes à técnica.

Na Figura 5 (c) temos como exemplo um perfil de rugosidade gerado pelo AFM aleatoriamente na superfície cerâmica, o que possibilita uma avaliação gráfica da rugosidade (dentro das limitações citadas). Assim, para seis linhas em análise, obtidas isoladamente por ambas as técnicas microscópicas os valores gerados pelas equações (3) e (4) estão numericamente apresentados na Tabela 1.
Figura 5 - (a) Aspecto da superfície por microscopia de força atômica, (b) projeção tridimensional e (c) linha de perfil obtida em posição aleatória.

Estatisticamente os valores comparados são bastante próximos, sendo os dados originários do AFM de uma forma geral 15% menores que os obtidos por MEV. Isto já era esperado, devido as limitações acima mencionadas que tendem a ‘suavizar’ a superfície.

Tabela 1 - (a) valores de rugosidade R_a e (b) valores de rugosidade RMS, a partir de linhas aleatoriamente tomadas em ambas as técnicas.

<table>
<thead>
<tr>
<th>Linhas</th>
<th>Mev (µm)</th>
<th>AFM (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,135</td>
<td>0,901</td>
</tr>
<tr>
<td>2</td>
<td>0,973</td>
<td>0,816</td>
</tr>
<tr>
<td>3</td>
<td>0,900</td>
<td>0,688</td>
</tr>
<tr>
<td>4</td>
<td>1,272</td>
<td>1,305</td>
</tr>
<tr>
<td>5</td>
<td>1,175</td>
<td>1,055</td>
</tr>
<tr>
<td>6</td>
<td>1,153</td>
<td>0,909</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linhas</th>
<th>Mev (µm)</th>
<th>AFM (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média</td>
<td>1,013±0,138</td>
<td>0,946±0,213</td>
</tr>
<tr>
<td>Desvio</td>
<td>~ 6,5 %</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linhas</th>
<th>RMS Mev (µm)</th>
<th>RMS AFM (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,235</td>
<td>0,961</td>
</tr>
<tr>
<td>2</td>
<td>1,054</td>
<td>0,930</td>
</tr>
<tr>
<td>3</td>
<td>0,994</td>
<td>0,712</td>
</tr>
<tr>
<td>4</td>
<td>1,331</td>
<td>1,317</td>
</tr>
<tr>
<td>5</td>
<td>1,252</td>
<td>1,131</td>
</tr>
<tr>
<td>6</td>
<td>1,215</td>
<td>0,945</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linhas</th>
<th>RMS Mev (µm)</th>
<th>RMS AFM (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média</td>
<td>1,180±0,128</td>
<td>0,999±0,204</td>
</tr>
<tr>
<td>Desvio</td>
<td>~ 15 %</td>
<td></td>
</tr>
</tbody>
</table>

Os valores da rugosidade R_a e R_m obtidos, quando distribuídos forma gráfica (Figuras 6 e 7) permitem a visualização das flutuações das medidas. Cabe ressaltar que não há uma relação direta entre as linhas avaliadas, a numeração das linhas apresenta apenas a sequência com que foram obtidas.

Pelos dados das diversas linhas, para a rugosidade R_a a dispersão entre os valores (obtidos pelo AFM) são de 0,61 µm e para o MEV de 0,47 µm. Para a rugosidade RMS os valores de dispersão entre os pontos são: 0,60 µm para o AFM e 0,33 µm para o MEV, o que indica que as medidas das apresentam de uma forma geral resultados bastante próximos com baixas flutuações numéricas.

Embora a metodologia deva ser refinada com respeito à considerações entre limitações das técnicas, os dados obtidos indicam a viabilidade da normalização pela comparação da máxima intensidade por altura, nas condições deste experimento.
5. AGRADECIMENTOS

Os autores agradecem à FAPESP, processo 1977/8178-9 e a Embrapa (SEP) por auxílio financeiro recebido.

6. BIBLIOGRAFIA