CÁLCULO DE ALGUMAS CONDUTÂNCIAS DE GEOMETRIA ESPECIAL NO REGIME MOLECULAR

H. Onusio e L.M.F. Fagundes

Deptº de Física Nuclear – Instituto de Física – Universidade de São Paulo
Caixa Postal 20516 – São Paulo – SP

Os critérios de Knudsen são aplicados para se calcular condutâncias de geometrias especiais no regime molecular de armadilhas ("traps") e foles metálicos ("bellowsl", através da utilização de aproximações geométricas via funções matemáticas simples. Os resultados são comparados quando possível com os já existentes na literatura especializada.

Condutância, fluxo molecular, Knudsen

1. - Introdução

A condutância em regime molecular de dutos de forma geométrica variável pode, em princípio, ser calculada pela expressão (1),

$$C = \frac{\pi}{3} k' \bar{v} \left(\int_{0}^{L} \frac{P(x)}{S^2(x)} \, dx \right)^{-1}$$

onde
- S - área da secção transversal do duto
- P - perímetro da secção transversal
- L - comprimento do duto
- \bar{v} - velocidade média aritmética
- k' - fator de correção dependente da geometria

O fator k' envolve, na realidade, o cálculo da probabilidade de transmissão através de manipulações matemáticas com...
aplicadas que em geral foram omitidas nos livros de Tecnologia do Vácuo das últimas décadas (2,3). Entretanto, mesmo com a não inclusão de K' em geometrias mais trabalhosas, consegue-se avaliar as impedâncias das mesmas com uma ordem de grandeza razoável para aplicações em Tecnologia do Vácuo.

A expressão de Knudsen aplicada a um duto de seção círcular de diâmetro D_0 e comprimento L fornece o resultado

$$C_0 = F(\overline{v}) \cdot \frac{\pi \cdot D_0^3}{16 \cdot L}$$

onde $F(\overline{v}) = \frac{4}{3} \cdot K' \cdot \overline{v}$

É nossa intenção aplicar a expressão de Knudsen para dois casos: foles metálicos (bellows) e um trecho de uma aradilha (trap) convencional.

2. - Fole Metálico

A Fig. 1 ilustra o desenho esquemático de um trecho de um fole metálico. Considera-se uma oscilação do diâmetro D_0, com máxima amplitude $D_0 + 2A$, mínima com $D_0 - 2A$ e gene-
ricamente com $D_0 \pm 2y(x)$ onde $y(x)$ é aproximado por uma fun-
ção matemática conveniente. Cada trecho com amplitude máxi-
ma $D_0 + 2A$ é denominado C_+; e para $D_0 - 2A$ de C_-, ambas com comprimento L_0 para um comprimento total L do fole metá-
lico.

![Fig. 1](image-url) - Secção longitudinal de um duto do tipo fole metálico.
Aos pares, se tivermos N vezes impedâncias em série do tipo \(\frac{1}{C} + \frac{1}{C} \) então \(L = N (2L_0) \) para podermos comparar com um duto de diâmetro \(D_0 \) de mesmo comprimento. Aproximamos \(y(x) \) por três funções: parabólica, senoidal e triangular.

Devemos calcular integrais do tipo

\[
\int_0^{L_0} \frac{P(x)}{S^2(x)} \, dx
\]

e para tanto escrevemos \(D = D_0 \pm 2y(x) \) e as integrais se reduzem a

\[
\int_0^{L_0} \frac{P(x)}{S^2(x)} \, dx = \frac{16}{\pi} \int_0^{L_0} \frac{dx}{(D_0 \pm 2y(x))^3}
\]

Nos casos reais, expandindo o denominador da integral e levando em consideração que \(y(x) / D_0 < 1 \), fazemos a aproximação

\[
[D_0 \pm 2y(x)]^3 = D_0^3 \pm 6y(x) \frac{D_0^2}{2} = D_0^3 \frac{D_0 \pm 6y(x)}{2}
\]

2.1. Função parabólica

Nesse caso temos:

\[
y(x) = - \frac{4A}{L_0^2} x^2 + \frac{4A}{L_0} x
\]

\[
\int_0^{L_0} \frac{P(x)}{S^2(x)} \, dx \sim \frac{16}{\pi} \frac{1}{D_0^2} \int_0^{L_0} \frac{dx}{D_0 \pm 6 \left(- \frac{4A}{L_0^2} x^2 + \frac{4A}{L_0} x \right)}
\]
e os cálculos fornecem

\[
\frac{C_+}{C_-} = \frac{1}{4} \left(\frac{D_0}{6A} - 1 \right)^{1/2} \ln \left[\frac{\left(1 + \frac{D_0}{6A}\right)^{1/2} + 1}{\left(1 + \frac{D_0}{6A}\right)^{1/2} - 1} \right] \]

\[
\frac{C}{C_0} = \frac{2A}{D_0} \left\{ \frac{1}{6 \left(\frac{D_0}{6A} - 1 \right)^{1/2}} \ln \left[\frac{\left(1 + \frac{D_0}{6A}\right)^{1/2} + 1}{\left(1 + \frac{D_0}{6A}\right)^{1/2} - 1} \right] + \frac{1}{\left(\frac{D_0}{6A} - 1 \right)^{1/2}} \arctg \frac{1}{\left(\frac{D_0}{6A} - 1 \right)^{1/2}} \right\} - 1
\]

2.2. - Função senoidal

Nesse caso,

\[y(x) = A \ \text{sen} \ \frac{\pi}{L} \ x\]

\[
\int_0^{L_0} \frac{P(x)}{S^2(x)} \ dx \ \sim \ \frac{16}{\pi} \ \frac{1}{D_0^2} \ \int_0^{L_0} \ dx \ \frac{D_0}{D_0 \pm 6A \ \text{sen} \ \frac{\pi}{L} \ x} \]

e os resultados são:
\[
\frac{C_-}{C_+} = \frac{\arctg \left(\frac{1 - \frac{6A}{D_0}}{\frac{6A}{D_0}} \right) \frac{1}{2}}{\arctg \left(\frac{1 + \frac{6A}{D_0}}{\frac{6A}{D_0}} \right) \frac{1}{2}}
\]

\[
\frac{C}{C_0} = \left[\left(\frac{1 - \frac{6A}{D_0}}{\frac{6A}{D_0}} \right) \frac{1}{2} \right]^{1/2} \cdot \pi \frac{1}{2}
\]

\[
\arctg \left(\frac{1 - \frac{6A}{D_0}}{\frac{6A}{D_0}} \right) + \arctg \left(\frac{1 + \frac{6A}{D_0}}{\frac{6A}{D_0}} \right)
\]

2.3. - Função triangular

Temos,

\[y(x) = \frac{2A}{L_0} x \quad 0 \leq x \leq \frac{L_0}{2}\]

\[y(x) = 2A - \frac{2A}{L_0} x \quad \frac{L_0}{2} \leq x \leq L_0\]

Assim,

\[\int_0^{L_0} \frac{p(x)}{S^2(x)} \, dx = 2 \cdot \frac{16}{\pi} \int_0^{L_0/2} \frac{dx}{\left(D_0 + \frac{4A}{L_0} x \right)^3}\]
e os resultados são:

\[
\frac{C_-}{C_+} = \frac{\left(1 + \frac{A}{D_0}\right)^2}{\left(1 - \frac{A}{D_0}\right)^2} \cdot \frac{\left(1 - \frac{2A}{D_0}\right)^2}{\left(1 + \frac{2A}{D_0}\right)^2}
\]

\[
\frac{C}{C_0} = 2 \left[1 + \frac{A}{D_0} \right] + \frac{1 - \frac{A}{D_0}}{\left(1 + \frac{2A}{D_0}\right)^2} + \frac{1 - \frac{2A}{D_0}}{\left(1 - \frac{2A}{D_0}\right)^2} \right]^{-1}
\]

2.4. - Os resultados obtidos estão graficados nas Figs. 2 e 3, em função de \(\lambda/D_0\).

![Graph](image)

Fig. 2 - Resultados das razões das aproximações do fole metálico por um duto cilíndrico.
Fig. 3 - Curvas das razões das condutâncias da região de duto de diâmetro menor \((C_-)\) pela de diâmetro maior \((C_+)\).

3. - Armadilha ("trap")

A armadilha em pauta é a da Fig. 4, e o trecho de interesse é o "duto" de comprimento \(B\) e diâmetro \(F\). A Fig. 5 ilustra com detalhes esse "duto" em particular, mostrando claramente a característica de "fluxo" radial entre raios \(R_1\) e \(R_2\).

O cálculo das impedâncias dessa armadilha pode ser efetuado utilizando as expressões da introdução do presente trabalho e das referências (4,5) e pode ainda ser encontrado na referência (6). Entretanto, o trecho abordado é calculado na referência (6) como um duto simples de comprimento \(B\) e diâmetro \(F\), como segue:

\[
C = F(v) \cdot \frac{\pi}{16} \cdot \frac{F^3}{B}
\]
Fig. 4 - Desenho esquemático de uma armadilha convencional (trap).

Fig. 5 - Desenho ilustrativo dos parâmetros geométricos da região de fluxo radial da armadilha (trap).
Dadas as suas características radiais, e aplicando-se os critérios de Knudsen teremos:

\[P(r) = 2 \times 2\pi r \]

onde foi considerado que a probabilidade de transmissão é inversamente proporcional à área lateral, da qual o perímetro \(P(r) \) faz parte. Para a secção transversal,

\[S(r) = 2\pi r \times B \]

e

\[S^2(r) = 4\pi^2 r^2 \times B^2 \]

aplicando a expressão de Knudsen entre \(R_1 \) e \(R_2 \)

\[
\left[\frac{R_2}{R_1} \right] P(r) \frac{dr}{S^2(r)} = \frac{1}{\pi B^2} \left[\frac{R_2}{R_1} \right] \frac{dr}{r} = \frac{1}{\pi B^2} \ln \left(\frac{R_2}{R_1} \right)
\]

e finalmente,

\[C = F(\bar{V}) \frac{\pi B^2}{\ln \left(\frac{R_2}{R_1} \right)} \]

3.1. - Aplicando o caso acima para um caso real, onde:

\[A = 10 \text{ cm}, \ B = 4 \text{ cm}, \ C = 14 \text{ cm}, \ F = 20 \text{ cm} \]

\[\text{e para} N_2, \ T \approx 20^\circ C, \ \text{pela referência (6) } C \approx 12. \ \frac{20^3}{4} \approx 240000 \text{ s}^{-1} \]

\[\text{e pela nossa aproximação, estimando } R_1 = 5 \text{ cm e } R_2 = 7 \text{ cm,} \]

\[C \approx 9000 \ \text{s}^{-1} \]

Percentualmente encontramos uma diferença de mais de 50%. Dependendo da razão \(R_2/R_1 \), essa diferença pode aumentar consideravelmente.
4. - Conclusões

No caso do foil metálico, para aproximações senoidal e parabólica (maiores restrições), a perda de condutância só começa a ser significativa (~20%) para \(A/D_0 > 0.10 \), representada principalmente por \(C_\) a partir de \(A/D_0 > 0.03 \).

Para o trecho da armadilha considerada, a diferença de critérios acarretou em um exemplo real um acréscimo de impedância maior que 50%. A impedância total, nesse tipo de armadilha, cresce entre 10% a 20%, dependendo das dimensões consideradas.

5. - Agradecimentos

Somos grato aos Srs. P.L. Ferrador e P.S.R.C. Luiz pela construção dos gráficos e desenhos.

6. - Bibliografia