"DESENVOLVIMENTO DA SOLDA CERÂMICA-METAL NO IEAv"

L.A.B. Tessarotto
Divisão de Física Experimental
Instituto de Estudos Avançados - IEAv
Centro Técnico Aeroespacial - CTA
Caixa Postal 6044 - São José dos Campos - SP

Jiro Takahashi
Acelerador Linear
Instituto de Física - IFUSP
Universidade de São Paulo
Caixa Postal 20516 - São Paulo - Capital

RESUMO

Foram realizadas junções do tipo cerâmica-metal por meio das técnicas de metalização de cerâmica, empregando-se os processos molibdênio-manganês e hidreto de titânio.

Para a sinterização da tinta aplicada sobre a cerâmica foi utilizado um forno (1650°C) controlado por microprocessador e capaz de operar em atmosferas de gás redutor ou inerte e a vácuo.

Em ensaios realizados, as junções foram submetidas a uma sequência de dez ciclos térmicos, com variações de temperatura de 200°C. Após estes ciclos, testes de vácuo revelaram valores de estanqueidade melhores que $1,2 \times 10^{-11}$ bar.1.s$^{-1}$ (9×10^{-9} torr.1.s$^{-1}$). Finalmente, nos testes destrutivos de tração, as junções suportaram pressões da ordem de 30 MPa (300 kgf/cm2).

ABSTRACT

The metallizing process of molybdenum-manganese and titanium hydride were used to obtain ceramic-to-metal junctions.

The ceramic surface was painted and was sinterized in a furnace (1650°C) capable of operating under reduction, or inert atmosphere or vacuum. The furnace temperature was controlled by a microprocessor system.

In laboratory tests the junctions were submitted to a sequence of ten thermal cycles; the temperature variation was about 200°C. Tests of vacuum tightness showed values up to $1,2 \times 10^{-11}$ bar.1.s$^{-1}$ (9×10^{-9} torr.1.s$^{-1}$). Finally in destructive tests it was observed that the junction supported pressures up to 30 MPa (300 kgf/cm2).
1. INTRODUÇÃO

Para a construção de um acelerador linear de elétrons, uma das etapas a ser vencida é a execução de um canhão de elétrons. Devido às características de funcionamento definidas para o acelerador linear que está sendo construído no IEAv, o canhão de elétrons deverá produzir um feixe de alta corrente (10 a 20A) /1/. A Figura 1 mostra um desenho esquemático do canhão, na qual se observa que a isolação entre o catodo e o anodo (100 kV) é realizada por meio de um tubo cerâmico correggido. Para a obtenção do alto vácuo necessário ao funcionamento do canhão, esse tubo cerâmico deve ser soldado às partes metálicas, o que é realizado por uma das técnicas de solda cerâmica-metal (SCM). Esta necessidade motivou o estudo visando à implementação das técnicas de SCM no IEAv.

2. HISTÓRICO

A necessidade de se utilizar materiais cerâmicos surgiu com a evolução da eletrônica no campo da tecnologia de microondas estendendo-se, depois, a outras aplicações /2/.

Devido à faixa de frequência utilizada em equipamentos de rádio-frequência (RF), era viável o encapsulamento desses equipamentos em vidro. Com a expansão da faixa de RF para frequências mais altas, a utilização do vidro limitava a operacionalidade dos equipamentos, pois as dimensões do encapsulamento tornavam-se menores. Experimentos realizados comprovaram que o desempenho desses equipamentos não era satisfatório devido aos seguintes aspectos:
- alta perda dielétrica,
- diminuição da resistência do encapsulamento,
- perda de carga e
- comprometimento da selagem.

Em razão da premente necessidade de se aumentar a frequência dos equipamentos geradores de microondas (válvulas de RF), um outro tipo de encapsulamento que substituisse o vidro deveria ser escolhido. Na época, os materiais que melhor se adaptavam às exigências eram os compostos cerâmicos. As principais vantagens de se utilizar materiais cerâmicos são:
- maior resistência mecânica,
- operação a temperaturas mais elevadas,
- melhores propriedades dielétricas,
- suporta maiores gradientes de temperatura e
- pode ser usinada nas dimensões desejadas.

Por outro lado, os materiais cerâmicos apresentam algumas desvantagens em relação ao vidro:
- sua opacidade,
- seu custo mais elevado, e
- a dificuldade na localização de defeitos superficiais ou internos.
Figura 1: DESENHO ESQUEMÁTICO DO CANHÃO DE ELÉTRONS DO ACCELERADOR CURUMIM
As primeiras notícias que se têm sobre a utilização de materiais cerâmicos (na forma de esteatita MgSiO₃) datam de 1920; esses materiais eram destinados à fabricação de isoladores para a indústria de equipamentos elétricos.

Para que a utilização da cerâmica tivesse sucesso na construção de dispositivos de microondas, deveria ser solucionado o problema da junção da cerâmica com o metal, de modo a proporcionar a selagem do invólucro (estanqueidade). Para a realização da junção dos encapsulamentos é fundamental a deposição de uma camada metálica sobre a superfície da cerâmica (metalização). Nesta camada serão brasadas as partes metálicas.

Entre 1934 e 1937 foram desenvolvidos as primeiras técnicas de SCM. Como pioneiras deste desenvolvimento tem-se a Siemens & Halske, a Telefunken e a AEG.

Durante a Segunda Guerra, surgiram as técnicas:
- junção de disco: consiste em prensar um pequeno filme de metal de topo com a cerâmica e brasar;
- solda fria: se resume na impregnação de metais maleáveis por fritura na cerâmica ou vidro;
- metais ativos: surgiu pela observação da grande afinidade do titânio e zircônio sobre a superfície cerâmica.

Após a Segunda Guerra, foi desenvolvido um processo baseado na sintetização do pó metálico sobre a superfície cerâmica. Segundo esta técnica, utiliza-se uma tinta composta por uma suspensão em nitrocelulose de pó metálico fino, na forma de óxido de um dos seguintes elementos: tungstênio, tántalo, molibdênio, rônio ou ferro.

2.1. SCM Utilizando o Processo Mo-Mn

O emprego de misturas de óxidos metálicos sobre cerâmicas de baixa fase vítrea resulta numa boa aderência. Exames micrográficos revelaram a penetração de uma quantidade apreciável de molibdênio na cerâmica. Uma alta aderência é obtida quando se utiliza o processo com Mo-Mn.

O mecanismo pelo qual ocorre a aderência entre a camada metalizada e a cerâmica, no processo Mo-Mn, ainda hoje não é bem conhecido. As hipóteses mais aceitas são as seguintes /2, 3/:

1. Formação de vidro de baixo ponto de fusão
 Materiais cerâmicos que contenham fase vítrea (Al₂O₃ + SiO₂) formam, juntamente, com o MnO e Al₂O₃, um vidro de baixo ponto de fusão. Caso o material cerâmico possua baixa fase vítrea deve ser empregada uma tinta contendo agentes vítreos (SiO₂) para possibilitar a formação do vidro. Nos dois casos, o vidro de baixo ponto de fusão penetra nos poros da camada de molibdênio, provocando a fixação desta camada durante o resfriamento.

2. Substituição de íons ou dissolução intersticial
 Para a cerâmica com nenhuma ou baixíssima fase vítrea, há
duas explicações possíveis: (a) os íons de Al\(^{3+}\) da estrutura da cerâmica são substituídos pelos íons de Mo\(^{6+}\); (b) o molibdênio é intersticialmente dissolvido na estrutura da cerâmica.

Antes da realização da brasagem é necessário, ainda, depositar uma camada de níquel sobre a superfície metalizada, devido ao fato do molibdênio não permitir um bom molhamento à solda. Após a niqueleção da cerâmica metalizada, é realizada a brasagem com a peça metálica, através de uma liga de solda à base de cobre e prata (temperatura de fusão de aproximadamente 800°C).

2.2. SCM Utilizando o Processo TiH,

Outra técnica de junção metálica de encapsulamentos cerâmicos é o processo de metal ativo (titânio e zircônio). Por causa da grande reatividade desses elementos com o oxigênio, dever-se-ia utilizá-los na forma de hidretos. Esses hidretos são geralmente fornecidos na forma de pó que, em suspensão em solução de nitrocelulose, originam uma tinta que é aplicada sobre a superfície cerâmica a ser metalizada. A soldagem é realizada após a brasagem da liga de solda sobre a superfície impregnada. Para temperaturas próximas de 900°C ocorrem dois fenômenos simultâneos: fusão da liga de solda e reação química entre o titânio e a cerâmica. Assim, numa única operação de aquecimento, processa-se a sinterização do titânio sobre a cerâmica e a brasagem com o metal desejado. Essa operação deve obrigatoriamente ser realizada em atmosfera de gás inerte, redutor ou à vácuo, para evitar a regeneração do óxido de titânio após dissociação, a uma temperatura próxima de 400°C.

Há duas explicações possíveis para descrever o comportamento do sistema durante o processo de metalização com metais ativos: (a) substituição dos íons Al\(^{3+}\) pelos íons Ti\(^{3+}\); (b) dissolução intersticial do titânio na estrutura da cerâmica. O titânio que penetra na cerâmica, a uma profundidade da ordem de 50 μm, catalisa a recristalização do material cerâmico, o qual, após a sinterização, possuirá um tamanho de grão homogêneo e um número reduzido de poros /3/.

2.3. SCM Utilizando Outras Técnicas

As técnicas descritas acima foram desenvolvidas para suprir necessidades específicas. Entretanto, vale ressaltar técnicas interessantes como a descoberta por Knecht /4/, que criou um processo de interfaces para fazer a junção de materiais de coeficientes de expansão bastante diferentes. Este processo consiste na 'interposição' de camadas de materiais cujos coeficientes de expansão variam gradualmente, desde o valor do coeficiente de um dos materiais (cerâmica, vidro duro, etc) até o valor do coeficiente do outro material (metal, vidro mole, etc). Além disso, para evitar problemas de tensão internas nas cerâmicas, molda-se os metais de interface em
geometrias adequadas, de modo a permitir uma compensação entre os diferentes coeficientes de expansão linear. Uma liga metálica que possui coeficiente de expansão linear próximo ao da cerâmica é o Kovar (29% Ni, 17% Co, 54% Fe).

3. PROCESSO DE METALIZAÇÃO REALIZADOS NO IEAfv

Os equipamentos necessários à implementação das técnicas de SCM dependem do método particular a ser desenvolvido. Os processos, que utilizam a sinterização de pó para a deposição de uma camada metálica sobre a cerâmica, necessitam de fornos com atmosfera redutora de hidrogênio, capazes de atingir temperaturas de até 1600°C. A brazagem da cerâmica metalizada com o suporte metálico pode ser feita utilizando-se forno a vácuo ou forno de atmosfera inerte. A liga de solda geralmente é composta por cobre e prata.

No IEAfv foram implementadas as técnicas de metalização baseadas nos processos de TiH₂ e Mo-Mn /5/.

3.1. Processo Mo-Mn

Para o desenvolvimento da SCM pelo processo Mo-Mn foram adquiridas da GTE WESGO Co. tintas especiais destinadas à aplicação sobre alumina de purezas 99,5% e 96%. A aplicação da tinta, sobre a superfície cerâmica, exige que está esteja totalmente limpa e livre de incrustações metálicas, óxidos metálicos, sais solúveis e materiais orgânicos. Uma vez limpa a superfície da cerâmica, aplica-se a tinta correspondente ao seu grau de pureza, utilizando-se um pincel, "spray" ou "silk-screen"; cria-se, assim, uma camada de 7 x 10⁻⁵ m a 1 x 10⁻⁴ m de espessura. Deve-se cuidar para que a camada resulte a mais homogênea possível. Após a secagem da tinta, a peça é levada ao forno para sinterização do molibdênio sobre a cerâmica.

No processo de sinterização a geometria das peças, sua massa e as dimensões do forno são os principais fatores que influem na determinação das taxas de aquecimento e resfriamento. É utilizada atmosfera de hidrogênio puro ou em mistura com nitrogênio em uma das seguintes proporções: 75% de H₂ e 25% de N₂, ou 25% de H₂ e 75% de N₂. Terminando o ciclo térmico, a tonalidade da camada metalizada é cinza claro.

Após a metalização da superfície cerâmica e antes da brazagem, há necessidade da aplicação de uma cobertura de níquel. Finalmente, procede-se a brasagem da cerâmica niquelada com o metal sendo escolhido o tipo de ligas de solda na forma que melhor se adapte às geometrias das peças envolvidas.

É importante observar que, se for necessário mais de uma operação numa mesma peça, iniciam-se as brasagens com liga de soldas de ponto de fusão mais elevado.
Tanto a liga de solda como o metal de base a ser soldado na cerâmica, deverão estar perfeitamente limpos e livres de gorduras.

3.2. Processo TiH$_2$

Para desenvolver este processo de SCM, o pó metálico de TiH$_2$ foi preparado em uma suspensão de nitrocelulose. É conveniente manter a tinta em constante agitação, a fim de proporcionar melhor homogeneidade na mistura.

Tanto a superfície da cerâmica, quanto o metal de base e a liga de solda deverão estar perfeitamente limpos. A aplicação da tinta é feita com pincel.

O conjunto – cerâmica pintada, liga de solda e metal de base – é montado e colocado no forno para brasagem, a qual, neste caso, é realizada em vácuo. A operação de aquecimento é feita de modo que a pressão no interior do forno seja inferior a 1,3 x 10$^{-2}$ Pa. Uma variação na pressão do sistema ocorre em torno de 400°C, que é a faixa de temperatura em que ocorre a decomposição do hidreto da tinta.

4. RESULTADOS OBTIDOS

Para qualificar as junções cerâmica-metal obtidas, realizaram-se vários testes:
- resistência a choques térmicos: 10 ciclos com variação de 200°C na temperatura da peça,
- estanqueidade para vácuo antes e após choques térmicos utilizando-se um "Leak Detector" sensível a hélio,
- resistência a tração mecânica.

A seguir são descritos os resultados dos testes para os processos de SCM implantados no IEAV.

4.1. Molibdênio-Manganês

Uma peça cerâmica de 99% de pureza, brasada de topo com Kovar (Figura 2a), utilizando de uma liga de solda, 72% Ag e 28% Cu (P.F. = 790°C), resistiu à pressão de 61,4 MPa (Figura 2b). Este valor é muito superior àquele estimado para a junção SCM do canhão de elétrons (7 MPa).

Extrapolando-se esse resultado para o tubo de cerâmica (diâmetro externo de 0,18 m e diâmetro interno de 0,16 m), espera-se que a junção resista a uma tração da ordem de 32 x 105 N, caso a solda seja realizada de topo.
Figura 2:

a) Peça cerâmica de 99% de pureza, brasada de topo com Kovar, evidenciando o dispositivo para ensaio de tração.

b) Mesmo conjunto após o teste de tração. Note-se os fragmentos de cerâmica aderidos ao metal.

b) Dispositivo após ensaio de tração. Nota-se que houve ruptura somente da cerâmica.
As junções SCD realizadas com cerâmicas de composições e densidades diferentes, fornecidas pelo IPT e pela NGK, suportaram pressões superiores a 30 MPa, sempre após serem aprovadas no teste de vazamento, que antecede e precede os ciclos térmicos.

4.2. Hidreto de Titânio

Embora não se tenha realizado uma grande quantidade de testes com o método do TiH₂, obteve-se bons resultados de aderência da camada metalizada.

Em teste preliminar dois discos cerâmicos (diâmetro interno = 0,026 m, diâmetro externo = 0,04 m e pureza 96%) foram pintados com tinta de TiH₂ e brasados utilizando-se a liga de solda 72% Ag e 28% Cu (P.F. = 790°C). Tal montagem (solda cerâmica-cerâmica), mostrada na Figura 3a, mostrou boa resistência aos choques térmicos, não apresentando vazamentos nem antes, nem depois destes. Para a realização dos testes de tração foram confeccionados dois suportes cujos discos foram colados com araldite ao metal. A solda resistiu à uma tração superior a 17,6 x 10³ N (24,3 MPa), pois a cerâmica rompeu-se antes da solda (Figura 3b).

Uma outra montagem - cerâmica-metal-cerâmica - foi ensaiada. As cerâmicas (de pureza 96%) foram pintadas de topo com a tinta de TiH₂ e brasadas com o metal (Kovar) utilizando-se a liga de solda 68% Ag, 27% Cu, 5% Pd (P.F. = 810°C). Em seguida, foram realizados os testes de estanqueidade e choque térmico revelando resultados satisfatórios. Nos ensaios de tração as junções resistiram pressões de até 58,7 MPa (Figura 4).

Figura 4: Corpo de prova em cerâmica 96% de pureza, brasada com Kovar utilizando-se o processo de metalização com TiH₂, após o ensaio de tração.
5. CONCLUSÃO

O processo de SCM, utilizando Mo-Mn e TiH₄, foi implementado com sucesso no CTA-IEAv.

Ensaios de estanqueidade, tração e choque térmico realizados em cerâmicas metalizadas e brasadas por esses processos, revelaram excelentes resultados. Nos testes de tração as peças suportaram pressões da ordem de 30 MPa. É importante mencionar que, no caso Mo-Mn, as tintas empregadas (WESGO) são recomendadas para cerâmicas de 96% e 99.5% de pureza; no entanto, elas foram utilizadas em cerâmicas de teor de pureza diferentes com resultados satisfatórios.

A partir dos resultados obtidos com peças cerâmicas de pequenas dimensões, iniciou-se o estudo para a realização da SCM em tubos cerâmicos de 90% e 96% de pureza, utilizando-se peças de diâmetro externo maiores, da ordem de 0,18 m. Estes ensaios estão em andamento. Também progrida o estudo do comportamento das junções com outros metais ou ligas como cobra e Monel, que possuem coeficientes de expansão linear bastante diferentes do da cerâmica.

A realização da SCM, no IEAv, abre um vasto campo de aplicações que compreende a construção e reparo de: canhão de elétrons, válvulas triodo, "thyratrons", passadores de tensão e corrente. O processo de SCM está, agora, disponível para aplicações em diversas áreas industriais e de pesquisa no país.
REFERÊNCIAS BIBLIOGRÁFICAS

