PROJETO E FABRICAÇÃO DE BOMBAS DE VÁCUO

F. P. Cantanhede

EDWARDS DO BRASIL EQUIPAMENTOS DE ALTO VÁCUO LTDA.
Rua Bernardo Wrona, 222
02710 - São Paulo - SP.

Aspéctos de projeto e fabricação de bombas de palhetas rotativas, pistão rotativo e Roots.
Revisão histórica do desenvolvimento destas bombas, para enfatizar as melhorias de projeto, principalmente nas áreas das válvulas de descarga, dispositivo de prevenção de retorno de óleo ao sistema, redução de ruído e vibração e aspectos de manutenção.
Introdução do sistema hidrocinético será revista e finalmente algumas técnicas de fabricação serão abordadas.

Pistão Rotativo, Palhetas Rotativas, Roots

A figura 1a mostra uma bomba de palhetas rotativas, cujas palhetas são montadas em um rasgo de um rotor cilíndrico e pressionadas por molas contra a parede de um estator cilíndrico e movimentadas pelo rotor. A figura 1b mostra uma bomba de pistão rotativo, onde o pistão (um cilindro oco com uma lingueta também oca) descreve um movimento circular forçado por um eixo cante montado no interior do pistão. Estas duas bombas são seladas a óleo. A figura 1c mostra uma bomba tipo Roots, com dois rotores em forma de oito que sincronizados por engrenagens externas giram em um estator oval, mantendo uma pequena folga entre si e o estator. Tais rotores trabalham sem lubrificação.

O princípio de funcionamento e desempenho destas bombas é bem conhecido. Das duas bombas seladas a óleo, o sistema de pistão rotativo é usado frequentemente em bombas de porte maior enquanto que o sistema de palhetas rotativas é preferido em bombas menores. Em parte, isto é devido ao limite de velocidade periférica das palhetas de aço que, quando ultrapassado, provoca a fricção excessiva e subsequente facionamento.
do óleo. Com a introdução de palhetas plásticas reforçadas com asbestos, a velocidade pode ser aumentada em até quatro vezes. As tendências atuais procuram bombas de funcionamento mais silencioso, com um equilíbrio melhor, as quais são capazes de trabalhar em maiores velocidades de rotação, proporcionando semelhante desempenho com custo e dimensões menores. Muitas bombas ainda são acionadas por correias, mas as fabricadas atualmente possuem seu eixo diretamente acoplado ao motor, formando uma estrutura integrada, trabalhando em velocidade igual a do motor.

As vantagens de um tipo de bomba sobre o outro não são bem definidas, mas a diferença fundamental de projeto é que a bomba de palhetas possui uma estrutura selada forçadamente e a bomba de pistão é selada geometricamente. Sob o ponto de vista de fabricação, esta diferença torna mais crítico o ajuste da bomba de pistão, que requer um ajuste mais cuidadoso para manter as tolerâncias necessárias para a selagem entre as regiões de alta e baixa pressão. A bomba de palhetas automatizando ajusta estas folgas para um mínimo possível, apresentando vantagens para a fabricação. Outra vantagem deste sistema é o pequeno desequilíbrio, sendo que as únicas massas que giram excentricamente são as das palhetas, descrevendo um caminho oval, duas vezes por rotação do motor. Com a introdução de palhetas plásticas este desequilíbrio tornou-se insignificante.

Para o sistema de dois estágios o gás é comprimido pelo primeiro estágio ou estágio de alto vácuo para o segundo estágio ou estágio de baixo vácuo, sendo expelido para a atmosfera. O óleo de lubrificação e selagem do primeiro estágio é desgaseificado pelo segundo estágio antes de entrar no primeiro. Esta desgaseificação combinada com a divisão de compressões entre os dois estágios, permite que sejam atingidas pressões menores do que as atingidas com as bombas de um estágio.

Frequentemente o primeiro estágio é consideravelmente maior do que o segundo por razões de economia. Neste caso, usa-se uma válvula de descarga no interestágio para aliviar a pressão quando o deslocamento do primeiro estágio é maior do que o do segundo.
válvula de descarga

duto seto
pelasetas

estator
roto

BOMBA DE PALHETAS ROTATIVAS
(Figura 1a)

válvula de descarga
came rotativo
cilindro oco
eixo
estator

BOMBA DE PISTÃO ROTATIVO
(Figura 1b)

BOMBA TIPO ROOTS
(Figura 1c)

circuito de óleo
(Figura 2)
As válvulas de descarga usadas nas bombas de palhetas rotativas consistiam inicialmente de uma esfera, deslocando-se em uma sede cônica, com seu movimento controlado por uma mola e um parafuso de ajuste. Este sistema era barulhento mas razoavelmente eficaz, porém a esfera acabava perfurando seu caminho através da sede, chegando às vezes até o rotor. O primeiro aprimoramento foi a introdução de um outro tipo de válvula que consistia de uma lâmina de aço montada sobre o furo de descarga, com guias laterais, possuindo um parafuso limitador de curso. Durante a descarga, enquanto a válvula estava aberta, uma pequena quantidade de óleo entrava na bomba, já que o mecanismo ficava todo imerso em óleo. Este óleo era suficiente para lubrificar e ajudar a selagem entre a alta e a baixa pressão. Este sistema também era barulhento e podia ser estimado o nível de vácuo pela variação do som. A quantidade de óleo que entrava no mecânismo era crítica para um bom desempenho da bomba, pois muito óleo causava calço hidráulico e a desgasificação do excesso de óleo prejudicava o vácuo final, sendo que pouco óleo não satisfazia as necessidades de selagem e lubrificação. O fluxo de óleo podia ser regulado parcialmente ajustando o limitador de abertura da válvula de descarga, mas isto era variável conforme a pressão de trabalho. Alguns projetos incluíam um orifício calibrado no estator para aumentar o fluxo de óleo. De qualquer forma a parada da bomba com diferença de pressão entre a sucção e a descarga provocava a entrada de óleo através do mecanismo até o sistema de vácuo, causando contaminação. Diversas tentativas foram feitas para evitar ou minimizar este efeito e reduzir o barulho da válvula de descarga, porém sem muito sucesso, até meados da década de 50 quando foi introduzida a válvula de borracha.

A válvula é composta de uma lâmina de borracha sintética cobrindo uma fileira de orifícios de descarga, apoiada por uma placa metálica que serve para limitar o curso e assegurar o retorno. A válvula é montada em uma depressão na parte mais alta do mecanismo, contendo apenas uma pequena quantidade de óleo. Com a parada da bomba, a pressão atmosférica força a lâmina contra os furos, selando contra a entrada de óleo, exceto quando alguma sujeira não permite o seu fechamento. Mesmo assim, a quantidade de óleo contida na depressão é insuficiente para causar problema. Este tipo de válvula de descarga não permite entrada suficiente de óleo no mecanismo, sendo necessário a introdução de um sistema adicional.
Um método é o fornecimento de óleo por um sistema de circulação forçada. Uma bomba de óleo de funcionamento semelhante ao da própria bomba de palhetas, porém de reduzidas dimensões, é montada no próprio eixo da bomba de vácuo, trabalhando em uma cavidade usinada no estator. Esta cavidade é selada por retentores em ambos os lados. Este mecanismo auto escorvante bombeia óleo do fundo do carter, através de um filtro de tela, fornecendo uma quantidade de óleo algumas vezes maior do que o necessário para lubrificar e selar os estágios de vácuo a uma pressão de cerca de 2 bar, sendo o fluxo de óleo controlado por uma válvula distribuidora. Esta válvula (figura 2), situada na parte mais alta do mecanismo é composta de uma sede com duas cavidades circulares concêntricas, interligadas com a bomba de circulação de óleo e os dutos que levam o óleo até o mecanismo da bomba. Uma lâmina circular de borracha sintética, montada com uma flange de compressão, é usada para selar a válvula distribuidora. Quando a bomba está em funcionamento, o óleo fornecido pela bomba de óleo levanta a lâmina de borracha e transborda da cavidade central passando pela próxima cavidade, entrando por esta para o mecanismo de vácuo. O excesso de óleo transborda retornando assim ao carter do óleo. Quando a bomba está desligada, a ação da mola força a lâmina de borracha contra o corpo da válvula distribuidora e desta forma, a bomba fica positivamente selada, não permitindo a entrada de óleo ou ar. No caso de falha da válvula distribuidora ou da válvula de descarga, apenas ar entrará no sistema. Antigamente o óleo entrava no estator e tornava difícil a partida da bomba, sendo que algumas vezes era preciso virar a bomba com a mão para remover o óleo. Este sistema de circulação forçada possui outras vantagens:

- Como o óleo é aspirado da parte inferior do carter, o nível de óleo não é crítico, o que é conveniente, pois é possível manter tanto um nível alto, quando se deseja uma maior diluição de contaminantes, como um nível baixo quando é necessário uma troca frequente de óleo ou quando se usam fluidos especiais e caros.

- Tubulações de diâmetro maior evitam o entupimento que era comum nos orifícios calibrados.

- A circulação contínua do óleo faz com que qualquer partícula, contaminação ou concentração de corrosivos seja arrastada rapidamente sendo posteriormente filtrado.
- O fluxo de óleo dissipa o calor concentrado na região da descarga, mantendo viscosidade constante, o que contribui para um funcionamento mais silencioso.

- O excesso de óleo que transborda da válvula distribuidora, enche as cavidades das válvulas de descarga e interestágio, possibilitando uma melhor vedação destas válvulas. Este óleo escorre das cavidades por todo o mecanismo da bomba, formando um filme de óleo que circula continuamente. Este filme ajuda a proteger o mecanismo da bomba, principalmente quando se usa fluido quimicamente inerte, o que é muito conveniente com a crescente demanda de bombas para uso na indústria nuclear e de semi-condutores.

- Lubrificação adequada mesmo em pressões altas. No sistema convencional, o funcionamento em pressões altas era perigoso pois a pressão expulsava o óleo, diminuindo a lubrificação.

- Facilidade para controlar válvulas de entrada ou de lastro de gás por pressão de óleo, para evitar entrada de ar no sistema quando a bomba para com o lastro de gás aberto.

- Facilidade para instalação de filtros externos, convenientes em aplicações onde se deseja uma melhor purificação do óleo ou correção da acidez.

- A pressão de óleo também pode ser usada para uma indicação positiva de funcionamento da bomba através de um pressostato ou manômetro, o qual pode ser útil para indicar o estado da bomba de óleo, dando uma indicação de quando a bomba precisará de manutenção.

Outra característica importante das bombas de vácuo é o sistema de lastro de gás. Quando o gás está sendo bombeado, o mesmo é comprimido antes de sua expulsão através da válvula de descarga para a atmosfera. As vezes é possível que ocorra condensação, principalmente quando a pressão parcial do componente condensável é maior do que a do gás permanente.

Para evitar ou minimizar esta condensação, uma pequena quantidade de ar é admitida na região de compressão, aumentando assim a proporção de gás permanente. O aumento de temperatura gerado pelo lastro de gás também contribui para desencorajar a condensação. O uso do lastro de gás é também recomendado para ajudar a desgaseificar o óleo da bomba quando novo, permitindo com isso um vácuo final melhor.
Bombas Roots
Detalhes de construção

Os estatores e os pequenos rotores são normalmente feitos de ferro fundido, os rotores maiores são normalmente fabricados de aço soldado. Idealmente, as superfícies devem ser lisas e balanceadas dinamicamente. As engrenagens e mancais são montadas do lado externo do estator principal, sendo que os eixos dos rotores passam pelas tampas do estator através de retentores. Os mancais são normalmente rolamentos de esferas ou roletes e são lubrificados por óleo contido em compartimentos externos. Normalmente, uma tubulação liga estes compartimentos à descarga da bomba, minimizando assim a tendência do óleo ser forçado a entrar no interior do estator.

Os rotores são sincronizados por engrenagens montadas em um dos compartimentos laterais da bomba. Do outro lado, um sistema de acoplamento liga o rotor ao motor.

Detalhes de Operação

Estas bombas trabalham normalmente em altas rotações (1400 x 4000 Rpm), devido os rotores não terem contato entre si. Os problemas normalmente encontrados são:

1. Sobreaquecimento principalmente dos rotores, causando travamento da bomba. Este problema pode ser eliminado resfriando os rotores com circulação de óleo através de seus eixos, ou mais convenientemente, incorporando um trocador de calor na região de descarga, próximo dos rotores.

2. A demanda de torque destas bombas, depende da diferencia de pressão entre sua entrada e saída, tornando-se excessivamente alta à pressões acima de 15-30 mbar. Existem algumas maneiras de sobrepor esta dificuldade:

 a) Um pressostato que assegure que a bomba só seja acionada com pressões abaixo de 15-30 mbar.

 b) Uma válvula de alívio que ligue a entrada com a saída quando a diferença de pressão exige um torque maior do que o motor pode fornecer.

 c) Transmissão hidrocinética entre o motor e o rotor, montado de tal forma que o torque máximo do motor não seja excedido. A rotação da bomba diminui em pressões altas, mantendo um diferencial de pressão sem sobreaquecimento e sem exceder o torque
máximo do motor.

As bombas Roots incorporando refrigeração à água e conversor de torque hidrocinético podem trabalhar continuamente em qualquer faixa de pressão de trabalho, e são normalmente ligadas simultaneamente com a bomba auxiliar, contribuindo com a velocidade de bombeamento em qualquer pressão.

Fabricação

Técnicas modernas de fabricação procuram quantidade de fabricação maior, com um mínimo de mão de obra especializada, sendo que a introdução de centros de usinagem de controle numérico foi de grande importância, já que todas as operações de furação, roscas, retífica e demais usinagens podem ser feitas automaticamente.

Um estator de bomba de vácuo é um bloco fundido por processo "Shell moulding" com tolerâncias de ± 0,5 mm em todas as dimensões internas e externas.

A fundição é complexa, possuindo seções finas, sendo que estas tolerâncias, obviamente permitem que o tempo de usinagem seja mínimo. A eficiência destas bombas depende amplamente do acabamento das superfícies, sendo que o material fundido deve possuir características específicas para permitir um bom acabamento.

O bloco fundido, após ser limpo com jato de ar é fixado no centro da usinagem, sendo usinado para obter tolerâncias de 0.013 mm, entre as faces, as quais devem ter paralelismo melhor do que 0.005 mm. e rugosidade melhor do que 0,4 microns. A operação final executada no estator é a usinagem do duoselo (figura 1a). Este selo é precisamente usinado em toda a largura do estator, possuindo o mesmo raio do rotor. Sua função é a de manter um filme de óleo de espessura mínima e constante entre o rotor e o estator na região mais crítica no ciclo de compressão, minimizando o vazamento entre a descarga e sução. Após a usinagem, amostras de um lote de bombas são examinadas em uma mesa de coordenadas. As bombas são ajustadas na fábrica e este ajuste é mantido com o uso de pino guia, tornando desnecessário o ajuste quando a bomba é desmontada para manutenção. Estas operações são típicas de fabricação e de bombas de palhetas rotativas.
Conclusão

Foram vistos os aprimoramentos incorporados às bombas de palhetas rotativas, sendo estas atualmente melhor balanceadas, mais silenciosas e confiáveis. A introdução do conversor de torque hidrocinético proporcionou uma grande melhoria no desempenho das bombas Roots. Finalmente a introdução de centros de usinagem com controle numérico permitiu um aumento significativo na qualidade e quantidade de bombas produzidas.

Bibliografia

1. Advances in Rotary Pump Design
 By N.S. Harris (Reprinted from "Pumps", Jan 77)

2. Pumped Oil Feed Systems for Rotary Vacuum Pumps
 By H. Wycliffe and B. D. Power (Reprinted from J. Vac. Sci. Technol, April 81)

3. Mechanical Vacuum Pumping Equipment for Applications involving Corrosive and Agressive materials
 By I. Currington, A. Devaney and P. Connock (Reprinted from J. Vac. Sci. Technol, April 82)

4. Mechanical Booster on Clean or Corrosive Applications
 By N. T. M. Dennis, L. J. Budgen and L. Laurenson
 (Reprinted from J. Vac. Sci. Technol, April 81)

5. Vacuum pumps are getting better
 By A. Gilles, N. S. Harris and L. Budgen (Reprinted from Industrial Research, Sept 77)