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ABSTRACT

The combination of plasma processes and heterogeneous catalysis 

for hydrogen production (H2) is an innovative green technology, 

resulting in synergic effects and unique fuel conversion outcomes, 

such as greater selectivity and lower activation temperature. The 

present study aims at investigating the feasibility of using plasma-

assisted processes as standard technique to produce supported 

metals catalysts. For this, owing to the higher cost of nickel and 

cobalt (traditional catalytic metals) compared to other more 

common metals, iron was selected as testing material. Fe/Al2O3 

supported catalysts can be applied in dry reforming of methane 

(DRM), the main component of natural gas.
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RESUMO
A combinação de processos de plasma e catálise heterogênea 

para produzir hidrogênio (H2) é uma tecnologia inovadora e 

limpa de última geração, acarretando em efeitos sinérgicos 

e resultados únicos de conversão de combustível, tais como 

maior seletividade e menor temperatura de ativação. O presente 

estudo visa investigar a viabilidade de uso de processos 

assistidos por plasma como técnica padrão para produzir 

catalisadores metálicos suportados. Para isso, devido ao custo 

superior do níquel e do cobalto (metais catalíticos tradicionais) 

em comparação com outros metais mais comuns, o ferro foi 

selecionado como material de teste. Os catalisadores suportados 

de Fe/Al2O3 podem ser aplicados na reforma a seco de metano 

(RSM), o principal componente do gás natural.

Palavras-chave: Hidrogênio, Catalisadores, Processos assistidos 

por plasma.
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INTRODUCTION
The increasing global demand for energy has led to the 

extensive use of fossil fuels, resulting in environmental problems, 
such as air pollution and the accumulation of greenhouse gases 
in the atmosphere. In this scenario, hydrogen emerges as a 
promising energy source because it is clean and has high energetic 
efficiency1,2. However, hydrogen is not a primary source of energy, 
so it is necessary to produce it from other resources3. Also, due 
to its difficult handling, transport and storage, it is necessary to 
develop techniques to produce this fuel close to where it will be 
used4.

Despite this, hydrogen is an attractive alternative for carbon-
based fuels since it can be produced from a variety of renewable 
resources (biomass, solar, water, geothermal) and non-renewable 
resources (coal, natural gas, nuclear energy) using energy in the 
form of electricity or heat5. Catalysis is the most widely used 
method for hydrogen production because it has higher conversion 
rate and hydrogen selectivity compared to other processes6.

Catalysts are being studied to enable onboard hydrogen 
production in automotive applications. Their function is to 
modify the kinetics of a chemical process through the reduction 
of the activation energy (i.e., the minimum energy required for 
the chemical reaction to occur) without changing the composition 
and the thermodynamics of the reactions7. The role of the catalyst 
becomes even more important when multiple reactions are 
thermodynamically viable, as it can determine the dominant 
reaction pathways, as well as their selectivity, rates, products and 
energy efficiency8.

Previous investigations have shown that noble metals such as 
platinum (Pt) and rhodium (Rh) have remarkable activity in the 
catalytic conversion of methane (CH4), ethanol (C2H6O), propane 
(C3H8) and carbon dioxide (CO2) to syngas (H2 and CO)9-11. 
However, high cost and the restricted availability of these metals 
are major barriers for their use in industrial catalytic applications. 
Thus, significant attention has been placed on the use of some 
non-noble transition metal catalysts, especially nickel (Ni) and 
cobalt (Co) supported catalysts, due to their availability and lower 
cost12. It is also possible to find in literature studies involving iron 
(Fe) supported catalysts13,14.

Although there are several studies in literature about 
simultaneous use of plasma and catalysis (also known as plasma 
assisted catalysis or simply PAC) to convert fossil fuels into H2, 
few have been studied about the effect of plasma as a synthesis 
process of catalysts, more specifically to obtain supported metal 
catalysts. Based on previous studies about plasma treatment of 
supported catalyst15-18, it is believed that plasma-assisted processes 
can be used as standard method for their production in a simple 
and effective way. Among them, sputtering stands out as an 
interesting technique to be used. It is based on the loss of atoms of 
a surface due to its energetic bombardment by ions19.

Under the influence of plasma, nucleation and crystal growth 
in catalyst preparation can be very different from those in the 

conventional thermal approach. Some thermodynamically 
unfavorable reactions can easily take place with plasmas20. It is 
expected many advantages from this alternative technique over 
the catalysts prepared by traditional methods (impregnation, 
drying and calcination), such as greater activity, selectivity and 
durability of the catalyst.

Alumina is commonly used as catalyst support in industrial 
scale reforming processes and is widely studied for automotive 
applications9,10,12,16,17,21,22. Alumina support is responsible for 
improving catalyst dispersion and for giving resistance to 
thermal cycling and chemical attacks22. In this paper, structural, 
morphological and chemical properties of Fe/Al2O3 supported 
catalysts, obtained by conventional sputtering, are investigated.

MATERIALS AND METHODS
Alumina foams with 26 pores/cm, 12.7 mm thickness and 

15 mm diameter (purchased from Goodfellow) were selected as 
catalysts support. The samples were fractured and cleaned using 
an Ultrasonic Cleaner model VR Ultrasonic for 600 s. After this 
process, foams were putted inside a reactor, as illustrated in Fig. 1, 
for plasma treatment.

Figure 1: Plasma reactor used for Fe/Al2O3 supported catalysts 
production23.

The alumina foam fragments were sputtered in an iron-based 
substrate (sample holder) in a reactor using 43.4 sccm Ar for 2 h 
with temperature of 450 °C, pressure of 0.98 Torr and 650 ± 12V 
DC. After treatment, it was observed that the samples (originally 
white) presented a dark layer on the surface, as shown in Fig. 2. 
During DC discharge, the working gas is ionized. As a result, many 
positive ions are produced within the chamber and accumulate 
on the surface of the target (alumina foam) due to its insulating 
character. Because of this fact, DC discharge is ineffective for 
sputtering alumina atoms, but is effective to sputter iron atoms 
from the sample holder, turning it into an interesting alternative 
for Fe/Al2O3 supported catalysts production. Also, DC power 
supplies are cheap, and the properties of the deposited particles 
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depend more of the energy with which the sputtered atoms land on 
the support surface. This energy can be tuned by the Ar pressure, 
substrate temperature and bias voltage. Furthermore, the effect of 
hollow cathode due to the holes present in the substrate helps to 
increase the rate of sputtering and, consequently, the thickness of 
the iron layer.

In summary, new peaks did not appear after the plasma 
treatment, and the width of the original sample peaks were not 
significantly affected. Nevertheless, mean grain size through 
Scherrer equation was evaluated using data obtained from XRD 
analyses (Eq. 1):

L = kλ/βcosθ 

where L is the crystallite size, K the shape factor (tipically equal 
0.9), λ the X-ray wavelength (1.5406 Å for Cu Kα), and β the peak 
width at middle high. By this way, it was noticed that plasma 
treatment tends to increase smoothly the mean grain size, as 
presented in Table 1.

Table 1: Mean particle size calculated by Scherrer equation based 
on XRD data.

Measurement 
(nm)

Before plasma 
treatment

After plasma 
treatment

Average 41.28 59.33

Standard deviation 4.39 6.31

The morphology of the samples was analyzed by FEG-SEM 
images, allowing the verification of the porosity and grains 
arrangement in the alumina structure. As shown in Fig. 4, the 
plasma does not affect the macro structure. The sense that 
the walls of the alumina cellular structure are more enclosed after 
plasma treatment is only due to the direction of the fracture of 
the original foam. In addition, the deposited iron layer due to 
sputtering is very thin, so that it was not even possible to detect it 
by XRD analyses. Therefore, the overall geometry and density of 
the pores were preserved.

Analyzing XPS survey spectra from samples before and after 
plasma treatment, shown in Fig. 5, it is possible to notice that after 
sputtering a large inelastic peak appears for greater binding energy 
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Figure 2: Plasma treatment photo, highlighting the visual aspect of 
alumina foams fragments after treatment.

Samples with and without plasma treatment were analyzed by 
X-Ray Diffraction (XRD) using a PANalytical Empyrean with 
incident Cu Kα radiation (λ = 1.5406 Å), scan position 2θ from 
20° to 90°, step size 2θ of 0.01° and scan step time of 29 s. These 
same samples were also morphologically characterized by Field 
Emission Gun Scanning Electron Microscope (FEG-SEM) using 
a JSM-6701F with voltage of 15.0 kV and magnification of 40 to 
30.000×. For this purpose, samples were previously covered with a 
thin gold layer to secure the electrical conductivity needed. X-Ray 
Photoelectron Spectroscopy (XPS) analyses using an SCIENTA 
OMICRON ESCA + with Al Kα excitation source (hν = 1486.7 eV) 
and energy step of 0.5 eV were conducted to evaluate chemical 
properties of the surface, such as oxidation states of elements and 
chemical interactions.

RESULTS AND DISCUSSIONS
Results from XRD in Fig. 3 indicate α-Al2O3 phase for samples 

before and after plasma treatment24,25. Although it is not the best 
alumina phase for catalytic applications26, this is highly used 
due to its good correlation between catalytic and mechanical 
properties. Also, by comparing the spectra it is noticed that 
almost all the peaks had an intensity increase, except the peak 
located at 80°, after plasma treatment. Indeed, this increase in 
peaks intensity is probably related to the greater mask diameter 
used in the analysis of plasma treated samples. However, the 
intensity increasing of each peak was not the same, which makes 
it possible to affirm that some cryptographic modifications have 
occurred.

Figure 3: XRD spectra of samples before and after plasma 
treatment.
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values from 707.0 eV27. This phenomenon indicates a high number 
of collisions of the photoelectrons detected and is a characteristic of 
metallic materials. This result is in agreement with the behavior 
of the valence bands. For the non-treated sample, a threshold of 
2.5 eV is observed to start the photoelectron emission. The 
opposite occurs with the treated sample, where a metal-like 
structure is identified (unbound states). This observation, in 
addition to the XRD results discussed above and the fact that 
plasma treatment was conducted in a mean temperature of 450 

Figure 4: FEG-SEM images from alumina foam (A) before plasma treatment with 40× magnification; (B) before plasma treatment with 
2.500× magnification; (C) after plasma treatment with 40× magnification; (D) after plasma treatment with 2.500× magnification.

Figure 5: XPS spectra for samples (A) before; (B) after plasma treatment.
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°C, suggest that iron sputtered from the substrate is only deposited 
over the alumina fragment surface, creating an amorphous layer 
of dispersed particles.

The increase of the catalytic activity on the alumina surface is 
proved from O1s orbital, where a concentration of OH radicals 
is identified on the covered sample, as depicted in Fig. 6. This 
chemical state is obtained from water splitting present in the 
atmosphere. The catalytic surface presents an asymmetrical peak 
where the lowest side is assigned to OH radicals and the highest 
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one to oxygen from lattice. The surface solely composed by 
alumina shows a symmetric peak related to oxygen from lattice. 
Another interesting feature for the covered foam is the shifting of 
the peak to lower binding energies. The increase of the electrons 
density caused by Fe atoms decreases the electrical force on the 
electrons of the O1s orbital due to the increased electrostatic 
shielding28.
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CONCLUSIONS
Plasma-assisted processes consist on a simple and efficient 

technique for supported catalysts production. This same procedure 
can be used to produce supported metal catalysts of greater 
catalytic activity and selectivity, such as Fe/Al2O3, Ni/Al2O3 and 
Co/Al2O3, which means an alternative process to impregnation, 
drying and calcination (most common used methods).
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