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ABSTRACT
Currently, digital systems that are able to meet major security restrictions are increasingly being demanded, both in the military and 
in commercial areas. Data security can be achieved by cryptographic algorithms. An important encryption algorithm known as data 
encryption standard (DES) was implemented in field programmable gate array (FPGA) in different synchronous architectures. In this paper, 
we have proposed the implementation of the DES algorithm in FPGA, in the asynchronous pipeline style. Compared to the implementation 
in FPGA using two different project styles, the proposed asynchronous obtained the average increase of 14.9% in throughput and the 
average reduction of 66.3% in latency.
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RESUMO
Atualmente, sistemas digitais que são capazes de atender a maiores restrições de segurança estão em crescente demanda, ambos 
nas áreas comercial e militar. Segurança de dados pode ser atingida através de algoritmos criptográficos. Um importante algoritmo 
de encriptação, conhecido como Data Encryption Standard (DES), foi implementado em uma Field Programmable Gate Array (FPGA) 
em diferentes arquiteturas síncronas. Nesse artigo, foi proposta a implementação do algoritmo DES em FPGA no estilo de pipeline 
assíncrono. Em comparação às implementações em FPGA usando dois diferentes estilos de projeto, a arquitetura assíncrona proposta 
apresentou um aumento médio de 14,9% na taxa de transferência de dados e uma redução média de 66,3% na latência.
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INTRODUCTION
In recent decades, there is a strong demand for digital systems that ensure the confidentiality of information, whether in processing or 

data storage. As an example, we have the purchasing activities on internet, banking, etc., which require transmission security and sensitive 
data storage. The digital system design, meeting these security restrictions, demands communication protocols and uses encryption 
methods. These methods are based on the arithmetic and focus on hiding data. Currently, there is also concern with the inclusion of traps 
in digital system-on-chip (SoC) systems design, especially for military purposes1. For example, cryptographic algorithms are intensively 
applied in software-defined radio, a strategic area in the military sector2. We can also mention aerial drones, which are mobile cyber-
physical systems, with applications in military operations, package delivery, reconnaissance, etc. There are applications in which aerial 
drones must be highly targeted, therefore insurances, like in military ones, in which attacks on these drones should be frequent, so that 
some important information can be extracted3. 

Although the encryption algorithms implemented in SoC seek to be robust to resist the attempts of breaching confidential data, there 
is a number of techniques that demonstrate, through physical properties, that it is possible to reveal the secret processed data4,5. This class 
of techniques is known as side channel attacks (SCA), which extracts sensitive information based on physical features, such as power 
consumption, electromagnetic radiation, processing time, etc., allowing the discovery of the information protected by encryption. These 
attacks seek to establish a relation between the analyzed physical features and the processed data. 

A cryptographic system typically uses a secret cryptographic key, which affects its efficiency. In modern cryptographic systems, 
knowing the key is equivalent to being able to perform operations on the encrypted system. Different encryption algorithms have been 
proposed to raise the reliability of data security, such as Rivest-Shamir-Adleman (RSA)6, tiny encryption algorithm (TEA)7, advanced 
encryption standard (AES)8 and data encryption standard (DES)9. The DES algorithm became one of the most popular algorithms in the 
late twentieth century. It was developed by the International Business Machines Corporation (IBM), with some help from the National 
Security Agency (NSA) in the 1970s. In 1977, it was adopted as an information processing standard in USA agencies10,11. The security of 
the DES algorithm lies in the size of the key and in the difficulty in decrypting without knowing the key. The operations of DES encrypt 
and decrypt are publicly owned. The DES algorithm is relatively slow if implemented by software, due to the size of the key and the 
permutation involving a 64-bit input block.

Different proposals have been made for the implementation of cryptographic systems, aiming at a greater reliability concerning 
attacks by hardware. We can mention the implementation of DES algorithm in the synchronous style in field programmable gate array 
(FPGA)12-20 or in very large-scale integration (VLSI)21,22. In deep-sub-micron (DSM) MOS technology, used today, the implementation 
of synchronous circuits causes difficulties related to the global clock signal, for example, clock skew, clock distribution network, high 
electromagnetic emission, low modularity and high noise. Asynchronous style is a promising alternative for solving problems related 
to the global clock signal. In the asynchronous style, there is the implementation of DES algorithm by Zhang et al.23, which work in the 
quasi-delay-insensitive (QDI) class, and in other authors’ works24-26, which implement the globally asynchronous locally synchronous 
(GALS) style.

Circuits implemented in devices based on vacuum microelectronics have interesting properties, such as robustness to temperature 
variations, allowing high electrical current, as well as radiation tolerance27,28. These circuits are desirable in space applications and adapt 
very well to the asynchronous paradigm, even if they are of an optical or a quantum style.

This paper has proposed a high-performance DES cryptographic processor, which is synthesized on asynchronous pipeline architecture 
and prototyped in FPGA. This proposed architecture consists of eight stages, operates on the two-phase handshake protocol and is 
bundled-data, so the data-path in each stage is synthesized in the conventional way, that is, single-rail29. Comparing two design styles–
synchronous pipeline and multi-point GALS of [25]–, the proposed asynchronous pipeline achieved the average reduction of 66.3% in 
latency and the average increase in throughput of 14.9%. 

PREVIOUS WORKS
In the end of the 1990s, some works concerning attacks by means of physical characteristics of devices running cryptographic 

algorithms were presented. Kocher30 has reported weakness of some algorithms related to their timing characteristics, like differences 
in the encryption time of different keys and plaintexts that would be exploited for attacks in some processor architectures. He has 
suggested some countermeasures, as random delay insertion in the operations and time uniformization of all needed operations, what 
would turn the timing characteristics of algorithms unfeasible to analysis. The attacks based on timing characteristic were named timing 
attacks30. Another work has showed the possibility to analyze power consumption and electromagnetic emission from chips based on 
complimentary metal-oxide-semiconductor (CMOS) technology, due the switching characteristics of these devices. This work focused 
on a class of attacks called power analysis and brought special attention to the differential power analysis (DPA), which is simple to be 
performed. The authors have proposed some countermeasures against DPAs, like device shielding and noise insertion.
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In the beginning of the 2010s, DPA countermeasures were divided in strategies of uniformization, randomization and masking. 
Soares et al.24 developed a strategy against SCAs based on randomization. They implemented the DES algorithm in GALS pipeline 
architecture, using a two-phase handshaking protocol as an interface protocol between the synchronous islands and a random clock 
frequency system that at each round fed the islands with random clock frequencies. The handshaking protocol was also used for the 
communication between islands and its own clock systems. The goals of this architecture were to hide the leakage of information by 
randomization of execution time, provided by the random clocks, and to overlap the current measurements caused by the pipeline. 
This proposed architecture achieved robustness against SCAs attacks when compared to versions of the same algorithm implemented in 
full synchronous and asynchronous styles24. Other works25,26 implemented the DES algorithm in the GALS style, providing increase in 
robustness to attack based on the analysis of the clock signal. 

In 2017, a work31 showed an energy-based attack flow against the architecture proposed for Soares et al.24. This attack was based on 
current traces time-alignment and subsampling and achieved success to find sub-keys of two-stage pipelined GALS architectures. The 
authors also proved that this attack flow had relatively low computational cost compared to other previous trials31.

ASYNCHRONOUS CIRCUITS: OVERVIEW
Asynchronous circuits operate by events not needing a global signal to synchronize the operations. The synchronization in asynchronous 

circuits is performed by handshaking protocols. Four different design styles are used32,33: decomposition (controller with data-path); 
asynchronous pipeline; macromodules composition; and desynchronization. Each one of these styles can be designed in a different class. The 
class of an asynchronous design defines the delay model in which the circuit operates properly and its interaction with the environment32,33. 

The main delay models are: gates and wires with bounded delays (GWBD) (tmin ≤ td ≤ tmax); and gates and wires with unbounded delay 
(GWUD), in which the delay is not defined, but finite. Two important asynchronous circuits that follow the GWBD model are: burst-
mode circuits and extensions and timed circuits32. 

Delay insensitive circuits (DI) follow the GWUD delay model. This model is more robust and free of timing analysis, but the application 
of these circuits is very limited34. 

Two classes of circuits that follow a less restrictive variant of the GWUD delay model are: speed independent circuit (SI) and QDI 
circuit. In the SI circuits, the gate delay is undefined, but finite, and the wire delay is zero32. QDI circuits follow the GWUD model with 
the isochronic fork restriction. This restriction defines that wires with fanout > 1 (with fork) have the same delay34. The circuit interaction 
with the environment is either performed in the generalized fundamental mode (GFM) (for example, burst mode) or in the input/output 
mode (M_I/O) (for example, DI, SI, QDI)33. In GFM, the change of a new burst input is allowed if the circuit has already reached a stable 
condition. In M_I/O, the reaching of the corresponding output signal enables the change of the input signals. 

Asynchronous pipeline style
The design style denominated micropipeline was proposed by Sutherland35 (see Fig. 1), and its architecture can be linear or nonlinear, 

with non-conventional registers and control composed of a C-element and an inverter gate. This paper deals with the linear architecture, 
which is used in signal processing. The main feature of the micropipeline is the simplification of the pipeline control, an important 
characteristic for asynchronous systems implemented in FPGA. The control is either distributed between stages or centralized, and 
it is responsible for the communication between the pipeline stages. In a FPGA platform, the control must be distributed in order to 
avoid hazard problems. The pipeline communication employs the handshake protocol with request and acknowledge signals32,33. The 
communication between the stages can be performed in two different protocols: 4-phase or 2-phase. Fig. 2 shows the behavior of both. 
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Figure 1: Bundled-data linear micropipeline35.
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The linear asynchronous pipeline design has two architectures. The first one is called bundled-data pipeline and uses only components 
of the synchronous paradigm. The second architecture is the QDI linear pipeline, which employs dual-rail components. 

 

 
Figure 2: Handshake protocol: (a) 4-phase; (b) 2-phase.

Bundled-data asynchronous pipeline architecture 
The bundled-data pipeline architecture uses single-rail functional units and delay elements between stages. The delay is defined 

considering the critical path of each stage. Different architectures have been proposed for the linear pipeline design style36-39. However, these 
pipeline architectures are generally focused on VLSI implementations, employing full-custom control37. FPGA-oriented pipelines have been 
proposed, but either complex delay mechanisms are used38 or the operation in the fundamental-mode is not observed39. Mousetrap is an 
asynchronous pipeline architecture based on logic gates which can be implemented in FPGA and has good performance (see Fig. 3)36. 
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Figure 3: Mousetrap linear pipeline36. 

CRYPTOGRAPHIC ALGORITHM: DATA ENCRYPTION STANDARD 
Figure 4 shows the basic flow of DES algorithm’s encryption process. At the beginning of the process, the bits of the plaintext are 

permuted by the initial permutation IP and then divided into two symmetric parts. After this, 16 iterations of a round function is 
performed, consisting in nonlinear transformations of one side followed by an XOR operation. Each round uses a sub-key of 48 bits 
generated from an original key of 64 bits in a process called key scheduling. In the end, the right and left sides of the word are concatenated, 
and another permutation is applied. The permutations are simply input bits mapping to predetermined positions, which are defined in 
the official documentation of the DES algorithm by the Federal Information Processing Standard (FIPS). In hardware level, permutations 
can be implemented by means of wiring. The same structure of Fig. 4 can be used to perform the decryption process, differing from the 
encryption, which uses sub-keys in a reverse order of application40.
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The block diagram of the round function can be viewed in Fig. 5. This round function has four operations: expansion bits, XOR 
operation, SBOXes and permutation P. Like in the case of initial and final permutations, the operations of expansion bits, SBOXes and 
permutation are all defined in the official standard. In the expansion bits operation, a 32-bit word is expanded by a mapping process, 
generating a word of 48 bits. An operation of XOR between this expanded word and the round sub-key is performed in sequence. 
Then, the 48-bit word is applied to a set of eight SBOXes. Each SBOX has four rows and 16 columns, in which the addresses are 
defined by a 6-bit input, so the input word is divided in eight sets of addresses. The output of a SBOX is a 4-bit word defined by the 
address specified by the input. In this work, the SBOXes were implemented by Boolean functions in a XOR-SOP form, that presented 
better performance compared to implementations based on look-up table41.

 

 
Figure 4: Sequence of digital encryption standard algorithm operations.

 

Figure 5: Block diagram of a round function of the digital encryption standard algorithm.

The key scheduling is the process in which a set of 16 sub-keys for each round are created from an original key, as shown in  
Fig. 6. The original key of 64 bits is permuted in the beginning of the process, as labeled in PC1, and then divided into two sub-
sets with 28 bits each one, in which eight parity bits are discarded. At each round, the sub-sets are exposed to left shifts, from 
one or two positions according to the round number. After shifting, an operation of permutation is used to deliver the sub-key 
to the round function, as defined by PC2. The permuted choices PC1 and PC2 are also defined by standard and use only wiring 
operations. In a pipeline structure with hardware replication, the left-shift operations can be implemented also by means of 
wirings, and this is the case of this work.
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Figure 6: Sequence of operation digital encryption standard algorithm key scheduling.

PROPOSED ASYNCHRONOUS PIPELINE 
The proposed bundled-data pipeline architecture is shown in Fig. 7, in which the bundled-data style is composed of N + two 

lines, with N lines related to the data and two lines to the request and acknowledge signals, which are used to carry out the 
communication. The proposal is made up of flip-flop D-based registers. At each stage, there is a data-path that is responsible 
for processing the data. For each register, there are an XNOR gate and a control that is an asynchronous finite state machine 
(AFSM). The XNOR gate allows the registers to be activated at both edges of the signal. Between the stages, there is a delay 
element that is defined by the critical path of the data-path, i.e., the propagation time of the data-path. The AFSM is responsible 
for the communication between the stages, through the two-phase handshaking protocol, that is, using input and output request 
signals [Ri, Ro] and input and output acknowledgment signals [Ai, Ao]. The AFSM and delay elements ensure synchronization 
of pipeline operations.
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Figure 7: Proposed linear pipeline architecture.

Figure 8 shows the specification of the proposed control that was described in signal transition graph (STG). The STG 
specification is an interpreted Petri net and was proposed by Chu42. The STG of the proposed control for the input signals 
are [Ri, Ao], and the output signal is [Ro]. The control synthesis involves two steps. In the first step, the state graph (SG) is 
generated, and the property complete state coding (CSC) is checked to see if it is satisfied; if not, state signals must be inserted43. 
An SG satisfies the CSC property if every pair of different states which are assigned the same binary code enables exactly the 
same set of non-input signals. 

Figure 9a indicates the SG of the control, which satisfies the CSC property, so it is in conditions to enable the implementation. 
The second step is to obtain the output equation Ro, which must be hazard free. Figure 9b shows the extraction of the Ro signal 
through the Karnaugh map. The equation of the signal Ro can be implemented with a C-element43 and an inverter gate, as 
shown in Figs. 9c and 9d. Figure 10 presents the proposed asynchronous pipeline architecture. 
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DATA ENCRYPTION STANDARD ENCRYPTION: ASYNCHRONOUS HARDWARE DESIGN 
The DES_Encryption algorithm was decomposed into eight stages, as shown in Fig. 11. The novelty is the Key Block proposal, as it 

appears in Fig. 12. In the case of encryption, the displacements are for the left, and in the decryption, they are done to the right. It ensures 
that the keys are applied in the opposite direction13. 

The keys of the previous round enter the Key Block, suffer displacements, which are basically repositioning the wires, and 
multiplexed according to the selection signal MODE (0 = Enc, 1 = Dec), and pass through a permutation box called PC2, which 
also is implemented by means of wire repositioning. From this permutation box, comes the key to be applied in the function of the 
round. Figure 13 shows the eight-stage asynchronous pipeline of the DES algorithm, which follows the proposed decomposition 
presented in Fig. 11.
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Figure 11: Decomposition proposal of digital encryption standard algorithm.
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SIMULATIONS AND RESULTS
To show the feasibility of the proposed project, the DES encryption algorithm was synthesized in three styles: 
• synchronous of four stages; 
• multi-point GALS25, that consists of four modules; 
• proposed asynchronous pipeline of eight stages. 
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The three projects were described in structural very high-speed integrated circuits hardware description language (VHDL), compiled 
and synthesized in post-layout in Intel Altera® tool, Quartus II software, version 9.0, Cyclone III family, in EP3C16F484C644 device.

Simulations
Figure 14 shows the simulation of the asynchronous pipeline of encryption DES algorithm (DES_E) with initial data and the 

simulation of DES_E algorithm after nine requests (REQ signal) operating on the two-phase protocol. The waveforms were exactly 
the expected for the DES_E. 

 

Figure 14: Simulation: asynchronous pipeline of digital encryption standard algorithm.

Results
Table 1 presents the results of the implementation of the DES algorithm in the versions of synchronous pipeline, multi-point GALS25 

and proposed asynchronous pipeline. Comparing the three styles, the proposed pipeline architecture had the average penalty of 166.9 and  
7%, respectively, in dynamic power and area (LUTs – Look-Up-Table + FFs), when compared to the other two styles. The proposed 
architecture had the average reduction of 66.3% in latency time and the average increase in throughput (MOPS – 106 operations per second) 
of 14.9% when compared with two other styles. The high-dynamic power penalty of our proposal is related to the high number of LUTs used; 
this is due to the delay elements and the type of functional units.

Table 1: Results of the design styles of DES_E algorithm.

Design styles Latency
Throughput

MOPS Dynamic power

Macrocells

LUTS Flip-Flops

Synchronous pipeline 
(fMAX = 125MHz)

268 ns 100.0 137.97 mW 4,604 1,866

Multi-poing GALS 
from Curtinhas et al.25 189 ns 83.3 46.41 mW 4,926 2,095

Asynchronous pipeline
proposed

75.8 ns 105.3 246.06 mW 6,192 1,024

GALS: globally asynchronous and locally synchronous; LUTS: look-up-table.

 CONCLUSION
This work proposed a data encryption standard FPGA-based implementation according to the device Altera Cyclone III family, 

in EP3C16F484C6, using an 8-stage asynchronous pipeline design style and a sub-key multiplexing system for the encryption/
decryption modes. At each clock cycle, a new key and a new plaintext can be processed, and at each new cycle of clock, after the 
pipeline fulfillment, a new valid ciphertext can be obtained in the output. Furthermore, the system can be switched between the 
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