CRESCIMENTO DE MONOCRISTAIS E ESTUDO DA REDISTRIBUIÇÃO DE SOLUTO EM LIGAS DE TELURETO CHUMBO-ESTANHO (Pb_{1-x}Sn_xTe)

Sandro Aparecido Baldacim¹, Marcio Tury de Carvalho¹, Rogério Duque Gonçalves², Carlos Alberto Guimarães Pagnano³ e Carlos de Moura Neto¹

¹ Instituto Tecnológico de Aeronáutica, ² Instituto de Aeronáutica e Espaço, ³ Instituto de Estudos Avançados, Centro Técnico Aeroespacial - SJCampos - SP, Brasil

Resumo

Foram crescidos monocristais semicondutores $Pb_{1-x}Sn_xTe$ através do Método Bridgman. Selecionou-se a liga Telureto de Chumbo-Estanho por apresentar banda de energia do tipo direto da ordem de 0,30 eV, permitindo operação no intervalo de 3-30 μm, ou ria, ideal na fabricação de detectores fotovoltáicos para a operação na região do infravermelho termal (8-14 μm). Através do diagrama de fases da liga Pb_{1-x}Sn_xTe, pode-se observar que o soluto SnTe é rejeitado a partir da interface sólido/líquido na solidificação, formando uma camada enriquecida de soluto. Devido à presença da gravidade, o soluto acumulado na interface tende a se redistribuir uniformemente na fase líquida através da convecção, uma vez que o soluto SnTe é menos denso que o solvente PbTe. Como resultado, a distribuição final de soluto tende a ser acumulativa, aproximando da equação de Scheil, sendo verificado e comprovado através de análise de espectrometria por dispersão de energia (EDS), com o auxilio de microscopia eletrônica de varredura (MEV). As análises obtidas por microscopia óptica, microscopia eletrônica de varredura e medidas de raios-x indicaram que os resultados obtidos concordaram com os existentes na literatura, verificando-se, nos cristais crescidos, a presença de alta homogeneidade na sua composição e uma baixa densidade de defeitos.

1 - Introdução

Estudos recentes [1] mostram que os crescimentos de monocristais de semicondutores de banda de energia estreita, particularmente os compostos IV (Sn,Pb) e VI (Te), tais como a liga pseudobinária Pb_{1-x}Sn_xTe, são amplamente estimulados por suas aplicações na fabricação de detectores de radiação infravermelho e sensores para comunicações por laser, além da utilização em espectroscopia de alta resolução, particularmente nas técnicas de separação de isótopos de urânio e na monitorização de poluição ambiental.

Como este trabalho tem por finalidade o crescimento de monocristais através do Método Bridgman, com ênfase voltada para a fabricação de detectores fotovoltáicos para a operação na região do infravermelho termal (8-14 µm), fundamental para sensoriamento remoto e controle de altitudes de satélites artificiais, selecionou-se a liga Telureto de Chumbo-Estanho (Pb_{1-x} Sn_x Te) por apresentar banda de energia proibida estreita do tipo direto da ordem de 0,30 (eV), permitindo a operação no intervalo 3-30 µm [2].

Uma característica extremamente interessante destes compostos é o fato de que a faixa de detecção, ou analogamente, o comprimento de onda de emissão, pode ser controlado tanto pela composição x da liga como pela temperatura de operação [3].

2 - Conceitos Gerais

2,1 - Estrutura de Bandas

O Pb Sin Te possui uma largura de banda de energia proibida do tipo direlo, e sua variação em função da composição x foi determinado através de medidas de efeito fotovoltáico [4], emissão estimulada de laser [5] e tunelamento [2] às temperaturas de 12 K e 77 K.

A figura 1 mostra a variação da largura de banda de energia proibida do Pb Sn Te em função da composição [6], para as temperaturas de 12 K & 77 K.

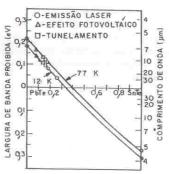


Figura 1 - Variação da largura de banda de energia proibida do Pb_{1-x}Sn_xTe em função da composição para as temperaturas de 12 K e 77 K [6].

Atiando este resultado ao fato de a variação da largura de banda com a temperatura de PbTe ser oposta a SnTe, conforme podese observar pela Tabela 1 [7,8;9], Dimmock et all [5] propuseram um modelo de estrutura de bandas para $Pb_{1-x}Sn_xTe$ na qual as bandas de valência e de condução do SnTe são invertidas em relação às de PbTe

Dixon e Bis [10] confirmaram a validade de inversão de bandas através das medidas de resistividade elétrica e coeficiente Hall em ligas de $Pb_{1-x}Sn_xTe$ para um intervalo de temperaturas de 4 a 300 K.

Tabela 1 - Alguns valores de largura de banda do PbTe e SnTe com o aumento de temperatura [5;7;8;9]

	Eg (eV)		
	12K	77K	300K
PbTe	0,18	0,22	0.31
SnTe	0,30	0,27	0.18

Assim, a possibilidade de controle da largura de banda de energia proibída com a variação da composição de estanho é que torna este material um dos melhores candidatos para a confecção de lasers e detectores sintonizados para a operação na região do infravermelho termal.

2.2 - Redistribuição de Soluto durante a solidificação

É da maior importância saber como é redistribuido o soluto durante a solidificação ou crescimento, pois devido ao fato de as temperaturas SOLIDUS e LIQUIDUS não coincidirem, o sólido em crescimento apresenta composição química diferente da fase líquida [11].

Por outro lado, a redistribuição de soluto pode ser controlada através de determinados parâmetros de solidificação, como por exemplo, gradiente de temperatura e velocidade de solidificação, permitindo uma otimização nos processos de refino por fusão zonal, processos esses empregados na obtenção de materiais de elevada pureza química, como por exemplo, os materiais à grau eletrônico [12].

2.2.1 - Solidificação em condições de equilíbrio

A solidificação, em condições de equilibrio, não é normalmente observada na prática, devido ao baixo valor da difusividade no sólido. Durante a solidificação em equilibrio, considerando que as condições sejam tais que ocorram difusão completa tanto no líquido como no sólido, o sólido em crescimento e o líquido remanescente, em todo o tempo, manterá as composições dadas pelo diagrama de equilíbrio de fases [11]

Entretanto, sob condições reais de solidificação, a difusão no sólido é em geral desprezivel e a fase liquida apresenta uma mistura completa devido aos fluxos convectivos e difusos, o que não permite estabelecer facilmente uma condição de solidificação em probrio [13;14].

 2.2.2 - Solidificação em condições de nãoequilíbrio

Em condições de não-equilíbrio, devem ser considerados dois casos.

- Primeiro caso :

O aumento de soluto no líquido pode ser dispersado somente por difusão, e devem existir no líquido condições de mistura total que espalhem o excesso de soluto rapidamente através do volume do líquido.

A equação diferencial, que descreve esta solidificação em regime permanente, pode ser obtida pela primeira Lei de Fick [15,16]:

$$J = -D \left[\frac{dC}{dX} \right] \tag{1}$$

E a equação diferencial que descreve o perfil de concentração de soluto, possui uma solução geral do tipo:

$$C = C_0 [1 + ((1 - K_0)/K_0) \exp -(R \times / D)]$$
 (2)

onde:

C = concentração de soluto no líquido a uma distância x da interface sólido/líquido;

R = velocidade de crescimento;

D =difusividade; e

Co = concentração inicial de soluto.

- Segundo Caso:

Para condições de não-equilíbrio, existindo condições de mistura total por convecção ou agitação mecânica no líquido, no caso $K_0 < 1$, o soluto rejeitado na interface será distribuído uniformemente por todo o líquido. Conseqüentemente, nos estágios iniciais, quando existe grande quantidade de líquido, a variação total na composição será pequena. Entretanto, à medida que vai ocorrendo a solidificação, esta variação no líquido vai se tornando apreciável. A redistribuição final do soluto tende a ser acumulativa aproximando da equação de Scheil, isto é:

$$C_s = K_0 C_0 (1-g)^{K_0-1}$$
 (3)

Esta equação é conhecida como a Equação de Scheil [11], e a forma de distribuição de soluto correspe ' nte é mostrada na figura 2.

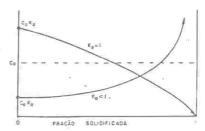


Figura 2- Perfil "distância x concentração" de uma barra sob condições de mistura total [11].

3 - PROCEDIMENTO EXPERIMENTAL

3.1 - Montagem dos equipamentos

Com relação à montagem dos equipamentos, foram adquiridos e montados os seguintes equipamentos com as suas respectivas unidades:

3.1.1 - Unidade de aquecimento

A unidade de aquecimento consta de um forno tubular de alta temperatura, com aquecimento resistivo. A temperatura máxima é de aproximadamente 1250 °C. Este forno é constituído de três zonas de aquecimento, distintas entre si, sendo cada zona controlada individualmente, possuindo um comprimento de 38 cm; um diâmetro interno de 5 cm e um diâmetro externo de 33 cm.

3.1.2 - Unidade de Potência

A potência elétrica fornecida à unidade de aquecimento, bem como o controle da mesma, é executado por esta unidade, composta por um auto-transformador variável trabalhando em conjunto com controladores de temperatura. Tais equipamentos de controle trabalham em malha fechada usando como sensores, termopares do tipo K, Chromel-Alumel [17].

3,1,3 - Unidade de Movimentação

Esta unidade permite movimentar a ampola em velocidades extremamente baixas. É constituída por um motor de corrente continua trabalhando conjuntamente com um redutor de velocidade. No eixo de saída deste redutor foi adaptada uma polia, cuja função é movimentar um fio, na qual está presa a ampola de crescimento.

Foi associado ao sistema motor/redutor um controlador de velocidades, responsável pela variação de velocidades de crescimento, isto é, responsável pela movimentação da ampola (entre 0,1 cm/h).

A figura 3 nos mostra as unidades acima citadas, montadas conjuntamente, para a realização deste trabalho.

3.2 - Preparação da liga Ph_{1-x}Sn_xTe

Inicialmente, os elementos chumbo e estanho, com pureza mínima de 99,995%, foram pesados de acordo com a composição desejada através das equações de balanço estequiométrico obtidas para a liga Pb_{1-x}Sn_xTe.

Para a operação na região do infravermelho termal (8-14 μm), adotou-se x =0,20 (y=0,50), que corresponde a uma largura de banda proibida de 0,1 eV, ou seja, a um comprimento de onda de corte de 10 μm.

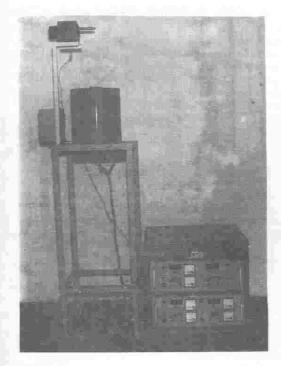


Figura 3 - Vista geral dos equipamentos, montados conjuntamente, para a realização deste trabalho.

Assim, de acordo com o balanço estequiométrico da liga Pb_{1-x}Sn_xTe, tem-se:

$$m_{Sn} = 0.573 \ [x/(1-x)] \ m_{Pb}$$
 (4)

$$m_{Te} = 0.616 \quad [y/(1-x). (1-y)] m_{Pb}$$
 (5)

Então, com x=0,20 e y=0,50, resulta:

$$m_{Pb} = 6.98 \, m_{Sn}$$
 (6)

$$m_{Te} = 0.76 \text{ mpb}$$
 (7)

Com base nos cálculos estequiométricos, foram extraidos de uma barra de estanho e de uma barra de chumbo, purificados a grau eletrônico [18], as quantidades em gramas calculadas para a preparação da liga Pb_{1-x}Sn_xTe. Pelo motivo do telúrio disponível para a preparação da liga estar em forma de pó, houve necessidade de se realizar um processo de fusão e destilação, respectivamente, para a sua purificação.

Obtidos os elementos para a liga, realizou-se, para cada um, um ataque químico, cujo objetivo principal foi eliminar a oxidação, isto é, realizar uma limpeza na superfície do material a ser utilizado.

De acordo com a Tabela 2, são citados separadamente os ataques químicos utilizado para os elementos estanho, chumbo e telúrio [19].

Tabela 2 - Reagentes utilizados para os ataques químicos dos elementos estanho, chumbo e telúrio [19]

Elementos	Reagente	Proporção
Chumbo	$(HAc) + (H_2O_2)$	1:1
Estanho	(HF) = (HNO ₃)	1:1
Telúrio	(HNO ₂) + (HCl)	1:1

Após o ataques químicos dos elementos, a liga preparada estequiometricamente, foi colocada dentro de um tubo de quartzo, selado com uma pressão de 1,33 10⁻³ Pa (10⁻⁵ Torr) e, homogeneizada em um forno a uma temperatura isotérmica de 950 °C, durante aproximadamente 24 horas, sendo em seguida transferida para os cadinhos de crescimento.

Os cadinhos utilizados para o crescimento de monocristais são de quartzo, apresentando um diâmetro interno e externo de 8 mm e 10 mm, respectivamente, com um comprimento de 250 mm.

Os cadinhos foram submetidos a uma seqüência de lavagem para a remoção de impurezas e, em seguida, evacuados sem carga e aquecidos com a chama de maçarico, para remover os traços de solventes orgânicos. Em seguida, a carga homogeneizada foi transferida para os cadinhos, para dar início ao crescimento de monocristais.

3.3 - Crescimento de Monocristais

No crescimento de monocristais utilizando a líga Pb_{1-x}Sn_xTe, através do Método Bridgman, a liga foi colocada nos cadinhos de crescimento e evacuados à pressão de 1,33 10⁻³ Pa (10⁻⁵ Torr). A liga, depois de fundida dentro do cadinho de crescimento à uma temperatura de aproximadamente 50 °C acima da sua temperatura de fusão, foi resfriada gradualmente, deslocando-se o cadinho sob um perfil de temperaturas típico, de acordo com o diagrama de fases da liga Pb_{1-x}Sn_xTe [20], mostrado na figura 4.

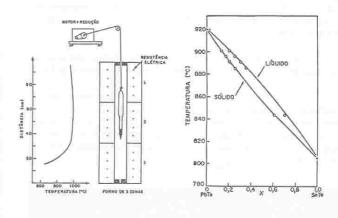


Figura 4 - Perfil de temperaturas típico para o sistema de crescimento Bridgman [1; 20] e o diagrama de fases do sistema Pb_{1-x}Sn_xTe [20].

A velocidade de crescimento, ou seja, a velocidade de solidificação, é obtida em função do gradiente de temperatura, através do perfil térmico do forno. A velocidade de crescimento está intimamente ligada com o gradiente de temperatura por uma equação que relaciona os dois parâmetros [11], isto é:

$$G/R > [(m C_0)/D], [(1-K_0)/K_0]$$
 (8)

onde:

G = gradiente de temperatura (°C/cm);

R = velocidade de crescimento (cm/s);

D = coeficiente de difusão (tabelado) [21]; e

 K_{0} = coeficiente de distribuição no equilíbrio, dado pelo diagrama de fases [22]

m = inclinação da linha liquidus, dada pelo diagrama de fases [23];

Co= composição inicial de estanho;

Por exemplo, para um gradiente de temperatura de 40°C/cm, a velocidade de crescimento máxima permitida é de 0,6 cm/hora. A utilização de uma velocidade superior a esta, gera um superresfriamento constitucional, ocasionando o surgimento de defeitos que podem interferir no crescimento dos monocristais.

Foram realizados quatro crescimentos, onde se procurou trabalhar com os dois principais parâmetros de crescimento, isto é, a velocidade de crescimento e o gradiente de temperatura.

Na Tabela 3 são mostrados o gradiente de temperatura, na região de solidificação, e a velocidade de crescimento utilizada em cada crescimento.

Tabela 3 - Gradiente de temperatura (G) e velocidade de crescimento (R) utilizados para cada crescimento

Crescimentos	G (°C/em)	R (cm/s)
primeiro	41	0,4
segundo	40	0,7
terceiro	43	0,4
quarto	26	0,4

4 - Resultados e Discussões

Para as análises micrográficas, os cristais foram colados no goniômetro com cera de abelha, e cortados com serra de fio diamantado na direção axial. Após o corte, os cristais foram lixados e polidos, usando-se pó de alumina de 9, 6 e 2 mícra, respectivamente, até o polimento final, em feltro especial. Para a revelação de discordâncias e contorno de grão foi realizado um ataque eletrolítico adequado para a liga [24].

 4.1 - Análises obtidas através de ataque eletrolítico, microscopia óptica e microscopia eletrônica de varredura (MEV)

No primeiro crescimento, a velocidade de crescimento de 0,4 cm/hora, em relação ao gradiente de temperatura (41 °C/cm), obtido pelo perfil térmico do forno, na região de solidificação, contribuiu para a obtenção de um monocristal, sendo comprovado e verificado através de análises por microscópio eletrônico de varredura (MEV), através da figura 5.

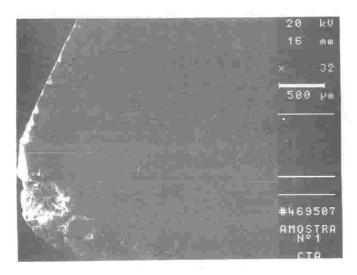


Figura 5 - Fotomicrografia obtida pelo microscópio eletrônico de varredura, mostrando a ponta do monocristal obtido. Verifica-se a ausência de contorno de grão.

No segundo crescimento, obteve-se, através do perfil térmico, um gradiente de temperatura de 40 °C/cm, aproximadamente igual ao primeiro crescimento. Variou-se a velocidade de crescimento de 0,4 cm/hora para 0,7 cm/hora. Para este gradiente de temperatura, a velocidade máxima permitida é da ordem de 0,6 cm/hora. Como conseqüência, verificou-se, através do MEV, mostrado na figura 6, que o resultado obtido foi um policristal, onde se observa a presença de contorno de grão.

Figura 6 - Fotomicrografía obtida por MEV, onde se observa a presença de contorno de grão, indicando que se trata de material policristalino.

No terceiro crescimento, procurou-se obter parâmetros semelhantes ao primeiro crescimento. Com um gradiente de temperatura de 43 °C/cm, movimentou-se a ampola com velocidade de crescimento de 0,4 cm/hora. De acordo com a figura 7, obtida através de um microscópio óptico, pode-se verificar a ausência de contorno de grão, tratando-se de um material monocristalino. Observa-se, também, a presença de porosidades decorrentes da contenção de gases durante a solidificação e do polimento final da amostra.

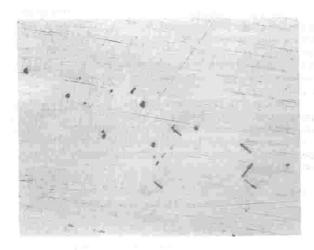


Figura 7 - Fotomicrografia obtida por microscopia óptica, onde se observa a ausência de contorno de grão e a presença de algumas porosidades, sendo um material monocristalino.

No quarto crescimento, obteve-se um gradiente de temperatura de 26 °C/cm, na região de solidificação. Para este gradiente, a velocidade de crescimento máxima permitida é da ordem de 0,3 cm/hora. Como utilizou-se uma velocidade de 0,4 cm/hora, obteve-se um material policristalino, onde, de acordo com a figura 8, com o auxílio de MEV, pode-se verificar a presença de contorno de grão. Através da figura 9, verificou-se a presença de precipitados de PbTe, que são causados pela contenção de gases durante a solidificação.

Figura 8 - Fotomicrografia obtida por MEV, onde se observa a presença de contorno de grão, indicando que se trata de material policristalino.

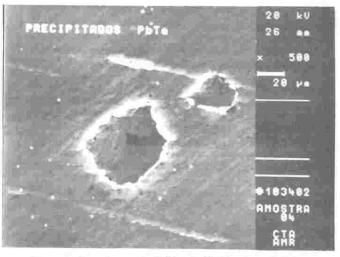


Figura 9 - Fotomicrografía obtida pelo MEV, onde se observa a presença de precipitados de PbTe.

4.2 - Análises obtidas através de espectrometria por dispersão de energia (EDS), com o auxílio de microscopia eletrônica de varredura (MEV).

Através do diagrama de fases do sistema Pb_{1-x}Sn_xTe [20], mostrado na figura 4, pode-se observar que o soluto SnTe é rejeitado a partir da interface sólido/líquido na solidificação, formando uma camada enriquecida de soluto. Devido à presença de gravidade, o soluto acumulado na interface tende a se redistribuir uniformemente na fase líquida através da convecção, uma vez que o soluto SnTe é menos denso que o solvente PbTe. Como resultado, a distribuição final de soluto na amostra tende a ser acumulativa, aproximando da equação de Scheil (equação 3), isto é:

$$C_s = K_o C_o (1-g)^{K_o} - 1$$
 (3)

onde:

 ${
m C_0}$ = concentração inicial da liga, ${
m K_0}$ = coeficiente de distribuição de equilíbrio; e g = fração solidificada.

Após o corte axial, lixamento e polimento, as amostras foram submetidas a análise de espectrometria por dispersão de energia (EDS), com o auxílio de um microscópio eletrônico de varredura.

Na tabela 4 são mostrados os comprimentos das amostras solidificadas, dados essenciais para a cálculo da redistribuição final de soluto, através da equação de Scheil (equação 3).

Tabela 4 - Dados relativos aos comprimentos das amostras solidificadas

experimentos	comprimento (mm)	
primeira amostra	40	
segunda amostra	35	
terceira amostra	35	
quarta amostra	40	

Nas figuras 10, 11, 12 e 13 são mostrados os perfis de composição axial das amostras de Pb1-xSnxTe, usando valor de Ko = 0,64, obtido pelo diagrama de fases (figura 4) para composição inicial de x = 0,20, em comparação com os perfis teóricos dados pela equação de Scheil.

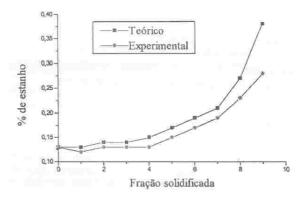


Figura 10 - Distribuição axial de Estanho (primeira amostra). Comparação entre o experimental e o teórico.

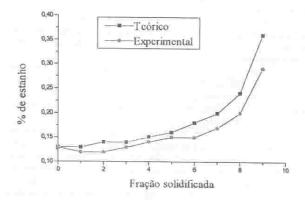


Figura 11 - Distribuição axial de Estanho (segunda amostra). Comparação entre o experimental e o teórico.

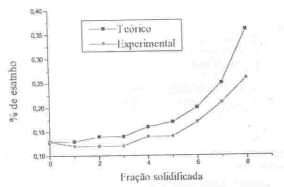


Figura 12 - Distribuição axial de Estanho (terceira amostra). Comparação entre o experimental e o teórico.

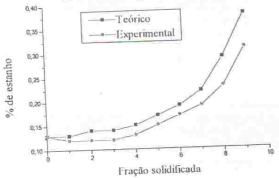


Figura 13 - Distribuição axial de Estanho (quarta amostra). Comparação entre o experimental e o teórico.

5 - Conclusões

Através dos quatro crescimentos, pode-se concluir:

- No primeiro e tereciro crescimentos, procurou-se seguir todos os requisitos básicos para se obter um monocristal, isto é, obedecendo à expressão que relaciona os parâmetros de velocidade de crescimento e gradiente de temperatura. As análises obtidas por microscopia óptica, microscopia eletrônica de varredura indicaram que os resultados obtidos concordam com os dados da literatura, verificando-se, nos cristais crescidos, a presença de alta homogeneidade na sua composição e uma baixa densidade de defeitos.
- A velocidade de crescimento está diretamente ligada ao gradiente de temperatura, ou seja, para um determinado gradiente, tem-se uma velocidade de crescimento máxima permitida. A utilização de um velocidade superior a esta calculada e estabelecida gera um super-resfriamento constitucional que pode interferir no crescimento do monocristal. No segundo e quarto crescimentos, podese verificar e comprovar este super-resfriamento constitucional, onde se obteve um material policristalino, ao invés de um material monocristalino.
- Nos resultados obtidos através de espectrometria por dispersão de energia (EDS), com o auxilio de um microscópio eletrônico de varredura, verificou-se e comprovou-se que a redistribuição de soluto, em ligas Pb_{1-x}Sn_xTe, ocorreu de acordo com a equação de Scheil.
- Os perfis de composição longitudinal apresentaram pequenas diferenças entre o teórico e o experimental. Isso ocorreu pela presença de fluxos convectivos, ocasionando uma configuração de soluto instável, pois, devido à gravidade, o solute, acumulado na interface tende-se a redistribuir uniformemente na iase líquida pela convecção, ocasionando um enriquecimento gradual de soluto na fase líquida, no decorrer da solidificação.

Agradecimentos

Ao Centro Técnico Aeroespacial (CTA), através da Divisão de Materiais (AMR) do IAE e ao Instituto Tecnológico de Aeronáutica (ITA).

Referências Bibliográfica

- CHEN,Y.A.; BANDEIRA,N. B.; FRANZAN,A.H.; RAPPL,P.H.O. Crescimento de Monocristais de Pb_{1-x}Sn_xTe. Revista Brasileira de Aplicações de Vácuo. Vol. 9, n. 2, p. 123, 1990.
 ESAK,L.: STILES,P.J. New Type of Negative Resistance in Barrier Tunneling. Physical Review Letters. Vol. 16, n. 24, p. 1108, 1966.
- 3 . HARMAN,T.C. ; MELNGAILIS,I. <u>Applied Solid State Science.</u> New York: Academic Press. Vol.4 ; 1975.
- MELNGAILIS,I.; CALAWA,A.R. Photovoltaic Effect in Pb_{1-x}Sn_xTe Diodes. <u>Applied Physics Letters</u>. Vol. 9, n. 8, p. 304, 1966.
- DIMMOCK, J.O.; MELNGAILIS, I.; STRAUSS, A.J. Band Structure and Laser Action in Pb_{1-x}Sn_xTe. <u>Physical Review Letters</u>. Vol. 16, n. 26, p. 1193, 1966.
- 6 MELNGAILIS,I.; "HARMAN,T.C.; WILLARDSON,R.K.; BEER,A.C. Single Crystal LeadeTinChalcogenides. Semiconductors and Semimetals. New York: Academic Press, Vol. 5 p. 111, 1970.
- 7 . STRAUSS,A.J. Metallurgical and Electronic Properties of Pb_{1-x}Sn_xTe, Pb_{1-x}Sn_xSe and Other IV-VI Alloys. <u>Transactions of</u> <u>The Metallurgical Society of AIME</u>. Vol. 242, p. 354, 1968.
- 8. KOBAYASHI,K.L.I.; HOMATSUBARA, K.F. Crystal Growth and Assessment of $\mathrm{Sn_XPb_{1-X}Te}$ Mixed Crystals. Progress in Crystal Growth and Characterization. Vol. 1, p.117, 1978.
- PREIER,H. Recent Advances in Lead-Chalcogenide Diode Lasers. <u>Applied Physics</u>. Vol.20, p.189, 1979.
- DIXON, J.R.; BIS, R.F. Band Inversion and the Electrical Properties of Pb_{1-x}Sn_xTe. <u>Physical Review</u>. Vol. 176, n 3, p. 942, 1968
- 11 . CAMPOS FILHO,M.P. ; DAVIES,G.J. <u>Solidificação de Metais e suas Ligas</u>. Rio de Janeiro : Livros Técnicos e Científicos; São Paulo : Editora da Universidade
- SILVA,M.J. Otimização do Processo de Purificação de Materiais por Fusão Zonal. <u>Tese de Mestrado - Unicamp.</u> 1991.
- 13 . HURLE, D.T.J. <u>Crystal Growth</u> : an Introduction. Londres : North-Holland Publishing Company. 1973.
- 14 . KINOSHITA,K.; MIYAZAWA,S. Large Homogeneous Pb_{1-x}Sn_xTe Single Crystal Growth by Vapor-Melt-Solid Mechanism. Journal of Crystal Growth. Vol. 57, p.141, 1982.
- SHEWMON,P.G. <u>Diffusion in Solids</u> New York: McGraw-Hill Book Company. 1963.
- DARKEN, L.S.; GURRY, R.W. <u>Physical Chemistry of Metals</u> New York; Ed. McGraw-Hill. 1953.
- 17 . Santos, P.R.G. Engematic Automação O que é Medição e Controle. São Paulo. 1973.
- SILVA,M.J. Preparação e Caracterização de Materiais de Alta Densidade Tecnológica. <u>Tese de Doutorado - Unicamp.</u> 1994.
- PETZOW,G. <u>Metallographic Etching</u>
 Ced. Traducão de Rosemarie Koch e James A. Nelson Ohio : American Society for Metals.
 1978. Original em Alemão.
- 20. CHEN, Y. A.; FRANZAN, A.H. Crescimento de Monocristais de Pb_{1-x}Sn_xTe pelo Método de Bridgman Inverso. <u>Revista Brasileira de</u> <u>Aplicações de Vácuo</u>. Vol. 11, n. 1, p. 66, 1992.
- 21. REED-HILL, R.E. <u>Princípios de Metalurgia Física.</u> 2 ed. Tradução de Antonio Carlos Gomes e outros. Rio de Janeiro : Editora Guanabara Dois Ltda. 1982. Original em Inglês.
- 22 . CHALMERS,B. Principles of Solidification. New York: John Wiley & Sons. 1964.
- 23 . TILLER,W.A.; JACKSON ,K.A.; RUTTER,J.W.; CHALMERS,B. The Redistribution of Solute Atoms During The Solidification of Metals. Acta Metallurgica. Vol. 1, p. 428, 1953.
 24 . NORR, M.K. An Electrolytic Polish and Etch for Lead

Telluride. <u>Journal of the Electrochemical Society.</u> Vol. 109, p. 433, 1962.