CARACTERIZAÇÃO DE FILMES DE DIAMANTE DOPADOS COM BORO

M.K.Franco, I.Doi, A.C.Peterlevitz, J.C.A.Alcócer, D.Chang, V.Baranauskas, C.R.Rodrigues e V.J.T-Airoldi**

FEE/UNICAMP - Cx.P. 6101, CEP: 13081-970 - CAMPINAS - SP
*DEEL/FE/UNIV. PASSO FUNDO - Campus I CEP: 99001-970 P.FUNDO - SP
**LAS/INPE - Cx.P. 515, CEP: 12227-010 S.JOSÉ DOS CAMPOS - SP

RESUMO

Filmes de diamante dopados tipo p foram crescidos pelo processo de deposição química a partir da fase vapor assistida por filamento quente (DQFV-FQ), sobre substratos de Si<100>, usando como dopante uma fonte sólida de Nitreto de Boro. A dopagem foi realizada concomitantemente ao processo de crescimento. A estrutura cristalina e a morfologia da superfície dos filmes foram caracterizados por Espectroscopia Raman e Microscopia de Fôrça Atômica. A Espectroscopia de Tunelamento Eletrônico mostrou a existência de uma banda proibida de energia no filme de cerca de 3.15 eV; e as medidas de resistência elétrica do filme em função da temperatura, uma energia de ativação estimada de 0.14 eV.

1. INTRODUÇÃO

O diamante possui uma combinação de propriedades elétricas, físicas e químicas como alta condutividade térmica de 20 W / cm.K (Si = 1.5 e GaAs = 0.46 W/cm.K), banda proibida de energia larga de 5.45 eV (Si = 1.1 e GaAs = 1.0 eV), alta mobilidade dos portadores - elétrons de 2200 cm²/V.s (Si = 1500 e GaAs = 8500 cm²/V.s) e lacunas de 1600 cm²/V.s (Si = 600 e GaAs = 400 cm²/V.s); alta rigidez dielétrica - de 10² - 10² V/cm (Si = 3x10² e GaAs = 6 x 10³ V/cm), entre outras, em apenas um único material [1]. Estas propriedades excepcionais fazem o diamante ser extremamente atraente como material de estado sólido e candidato potencial para aplicações em dispositivos eletrônicos de alta frequência, alta potência, alta temperatura, etc. [2-5].

Para estas aplicações a dopagem é sempre uma necessidade tecnológica. Desde o sucesso da síntese do diamante a baixas pressões por CVD, muitos esforços tem sido feitos a este respeito, na tentativa de obter filmes de diamante semicondutor de boa qualidade, tanto do tipo p quanto do tipo n.

A dopagem por meio de implantação iônica, apesar dos resultados relativamente bons, mostrando ser uma técnica promissora, pelo menos para a obtenção de diamantes semicondutores do tipo p, com a implantação do boro [6-9], é a técnica de maior complexidade dentre as diversas formas de dopagem. Por outro lado, o processo é acompanhado pela tendência do diamante à grafitização e pela dificuldade para remover os danos causados à amostra durante a implantação [8,10,11].

A dopagem por difusão térmica após o crescimento do filme tem suas limitações devido a solubilidade e difusibilidade da maioria das impurezas dopantes no diamante. Devido a forte ligação covalente o ponto de fusão do diamante é da ordem de 4000°C, embora torne-se em grafite à temperatura da ordem de 1500°C. Assim, a dopagem térmica realizada ao redor de 1000°C, excelente para o Si cujo ponto de fusão é de 1400°C, não é mais apropriada para o caso do diamante. À temperatura de 1000°C no Si a solubilidade e a difusibilidade dos dopantes são razoavelmente altas mas, para o diamante a esta temperatura, ambos estes parâmetros são ainda bastante baixos para a obtenção de uma dopagem efetiva. A outra forma de dopagem bastante pesquisada e com sucesso, é a realização da dopagem na fase gasosa, ou seja, juntamente com o crescimento dos filmes, usando fontes gasosas como o diborano, ou sólidas como o trióxido de boro, ou líquidas [12-16].

Neste trabalho investigamos a viabilidade da utilização de um dopante sólido (Nitreto de Boro - Carborundum BN-745), empregado na indústria eletrônica do silício [17], como fonte dopante atuando durante o crescimento. A caracterização morfológica dos filmes foi feita por microcospia de força atômica e a sua avaliação cistalográfica por espectroscopia Raman. Foi ainda medida a resistência elétrica em função da temperatura e de corrente x tensão e a densidade de estados destes filmes dopados através da espectroscopia de tunelamento de elétrons (ETE).

2. PROCEDIMENTO EXPERIMENTAL

Os filmes foram crescidos em um reator de CVD assistido por filamento quente (DQFV-FQ) [18], sobre substratos de silício <100>. Utilizou-se para o crescimento a mistura gasosa composta de $\mathrm{CH_4}(0.6\$\,\mathrm{vol.})$, $\mathrm{CF_4}$ (0.4\$ vol.) e $\mathrm{H_2}$ (99\$ vol.). Os substratos foram previamente polidos com pasta de diamante de 6 $\mu\mathrm{m}$ de granulação, procurando com isto aumentar a densidade de nucleação de diamante [19]. Estes substratos foram, antes da utilização no crescimento, submetidos à limpeza com acetona em ultrassom durante 20 minutos.

A dopagem foi efetuada simultaneamente com o crescimento do filme, através da evaporação da fonte sólida de Nitreto de Boro. Os parâmetros usados no crescimento foram: pressão do gás de 75 Torr; temperaturas do filamento e do substrato de aproximadamente 2200°C e 700°C, respectivamente, medidos por pirômetro ótico e termopar; e o fluxo do gás de 4 x 10⁻⁶ m³/s (à temperatura e pressão ambientes).

3. RESULTADOS

A caracterização morfológica dos filmes de diamante dopados, feita através da microscopia de fôrça atômica (MFA), mostrou serem os filmes depositados de pouca homogeneidade (figura 1), não apresentando o facetamento nítido dos grãos observados em filmes sem a dopagem, obtidos em condições experimentais similares de crescimento. Embora as condições de crescimento

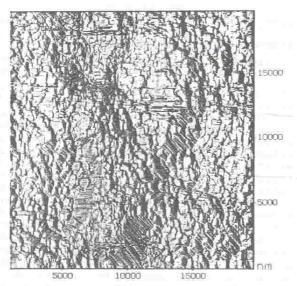


Fig. 1 - Imagem típica da morfologia do filme de diamante dopado, obtida por MFA.

sejam afetadas pela introdução dos dopantes, nota-se uma melhora significativa na nucleação, influenciando desta forma a morfologia da superfície do filme, conforme já observado por muitos pesquisadores [13-15].

A figura 2 mostra o espectro Raman típico obtido para as nossas amostras, onde se destacam uma banda entre 1300 e 1400 cm⁻¹ e outra próxima a 1600 cm⁻¹. A linha característica do diamante se encontra a 1332 cm⁻¹ e um pico centrado em 1550 cm⁻¹ caracteriza a presença de carbono tipo diamante, enquanto que picos em 1350 cm⁻¹ e 1580 cm⁻¹ são característicos de grafite policristalino ou carbono amorfo com ligação grafítica [20]. Este resultado de Raman confirma a aparência do filme observada por MFA, mostrando ter uma forte composição sp².

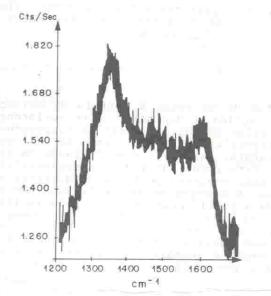


Fig. 2 - Espectro Raman típico dos filmes de diamante dopados para este trabalho.

A figura 3 mostra a característica I x V dos filmes de diamante dopados (o - mesma amostra utilizada para análise Raman, x -2" amostra, crescida em condições idênticas), medidas pelo método das quatro pontas. A curva I x V é praticamente linear em toda a faixa da tensão medida, mostrando um comportamento ôhmico. de comparação, apresentamos na efeito mesma figura a característica I x V de um filme de diamante não dopado, sintetizado nas mesmas condições experimentais. serva-se um comportamento linear até 8 V, a corrente aumentando abruptamente acima desta tensão, por aproximadamente uma ordem de grandeza. Apesar de curioso, não há explicação para esta quebra na tensão aplicada, uma vez que em diamante policristalino a condutividade do filme, com o tempo de deposição que houve, deveria estar completamente saturada pela hidrogenação.



Fig. 3 - Característica I × V dos filmes de Diamante crescidos sobre o substrato de Si.

O e X - filmes de diamante dopados durante o crescimento

• - filme de diamante não dopado

A fim de se obter a energia de ativação foi medida a dependência da resistência do filme dopado em função da temperatura. A figura 4 mostra que quanto maior a temperatura, maior é a condutividade do filme. Este resultado indica a característica semicondutora do filme de diamante dopado. A energia de ativação pode ser obtida a partir desta figura, pela inclinação da curva, estimando ser da ordem de 0.14 eV. Apesar da má qualidade dos filmes obtidos, este valor de energia de ativação é comparável aos resultados obtidos por Fujimori et alii.de 0.22 eV

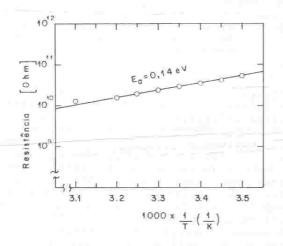


Fig. 4 - Resistência dos filmes de diamante dopados em função da temperatura.

[21], para diamante homoepitaxial dopado com boro com relação B/C de 1000 ppm. no gás reagente, assim como não muito diferente ao de Okano et alii. (0.12 - 0.2 eV para B/C = 1000 ppm.) [22]. Para monocristais de diamante natural do tipo IIb a energia de ativação relatada é de 0.37 eV. [1]. A energia de ativação menor observada no nosso caso supõe-se que seja devida ao elevado grau de dopagem. Provavelmente as impurezas tenham formado bandas receptoras, que determinam os caminhos de condução.

O filme de diamante dopado foi caracterizado também por Espectroscopia de Tunelamento Eletrônico (ETE). Esta técnica permite obter a densidade de estados da superfície (ρ) do filme, que pode ser expressa por:

$$\rho \propto \frac{d(\ell nI)/dV}{I/V}$$

onde o termo da direita é denominado condutividade normalizada [23]. Esta expressão é válida para corrente de tunelamento I que não seja nula, divergindo na região da banda proibida, onde I é nula. Na região da banda proibida a singularidade é contornada estabelecendo-se o valor p = zero ou utilizando um valor médio para I/V. Na realidade, a corrente de tunelamento é proporcional à densidade de estados da amostra e da ponta de prova [24]:

$$I \propto \int_{E_F}^{E_F+V} \rho_T(E - V) \rho_S(r_T; E) dE$$

sendo $\rho_{_{
m T}}({
m E})$ a densidade de estados correspondente à ponta de prova, $ho_{_{
m S}}({
m r,E})$ é a densidade local de estados devido à amostra e $ho_{
m T}$ é a posição do centro da ponta de prova. Como o material da ponta de prova é condutor, portanto apresenta densidade de estados aproximadamente constante independentemente da ddp aplicada, a variação observada na densidade de estados medida corresponde à do filme da amostra. A figura 5 apresenta a medida de [(d(ln(I))/dV) / (I/V)] do filme de diamante dopado com boro. Nota-se uma região com banda proibida de energia de aproxi-3.15 eV. Este valor difere de 5.45 eV relatado para diamante semicondutor natural [1]. Esta diferença pode ser atribuída à presença de impurezas e fases espúrias, conforme mencionado anteriormente, no filme analisado. Observando a figura 5 nota-se o desvio da banda, em relação ao nível de Fermi, indicando que o material é semicondutor do tipo p.

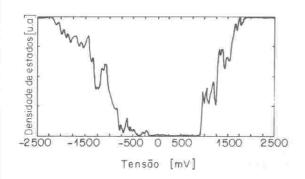


Fig. 5 - Densidade de estados do filme de diamante dopado, obtida através de ETE.

4. CONCLUSÕES

Os resultados apresentados de experiências de crescimento de filmes de diamante em um reator de DQFV-FQ, fazendo a dopagem simultaneamente ao crescimento dos mesmos, utilizando a fonte sólida de Nitreto de Boro, mostram a viabilidade do emprego deste procedimento para a obtenção dos filmes de diamante semicondutor. Os filmes crescidos nesta fase não apresentaram boa qualidade Raman, indicando a necessidade de aprimoramento para estabelecer parâmetros ótimos de crescimento.

A introdução do Boro altera as condições de crescimento e influencia na morfologia da superfície do filme dopado se comparada ao filme não dopado. O filme de diamante dopado para este trabalho apresentou: uma banda proibida de 3.15 eV; o desvio do centro da banda, em relação ao nível de Fermi, confirma a dopagem tipo p do filme; comportamento ôhmico da curva I x V; e uma energia de ativação de 0.14 eV, estimada a partir da medida da resistência em função da temperatura.

5. AGRADECIMENTOS

Agradecemos ao CNPq, CAPES e FAEP/UNICAMP pelo suporte financeiro.

6. REFERÊNCIAS

- FIELD, J.E.(Ed.); "The properties of natural and synthetic diamond"; Academic Press, N.Y., 1992.
- GEIS, M.W.; "Device applications of diamonds"; Thin Solid Films 216: 134-6, 1992.

- 3. ZHU, W.; STONER, B.R.; WILLIAMS, B.E. e GLASS, J.T.; "Growth and characterization of diamond films on non-diamond substrates for electronic applications"; Proc. IEEE 79(5): 621-46, 1991.
- 4. GILDENBLAT, G.S.; GROT, S.A. e BADZIAN, A.; "The electrical properties and device applications of homoepitaxial and polycrystalline diamond films"; Proc. IEEE 79(5): 647-68, 1991.
- BUCKLEY-GOLDER, I.M. e COLLINS, A.T.; "Active electronic applications for diamond"; Diamond and Related Materials 1: 1083 - 101, 1992.
- VASILOV, V.S.; "Ion implantation into diamond; Rad.Effects 37: 227-36, 1978.
- 7. BRAUNSTEIN, G. e KALISHI, R.; "Effective p-type doping of diamond by boron ion implantation"; J. Appl. Phys. 54(4): 2106 8, 1983.
- PRINZ, J.F.; "Activation of boron-dopant atoms in ion implanted diamonds"; Phys. Rev. B 38(8): 5576 84, 1988.
- MORI, Y. et alii.; "Electrical properties of boron implanted homoepitaxial diamond films"; Jpn. J. Appl. Phys. 32,Pt 2, 4B, L601 L603, 1993.
- 10. MORI, Y. et alii: "Effect of hydrogen plasma treatment on implantation damage in diamond films grown by chemical vapor deposition"; Jpn. J. Appl. Phys. 31, Pt 2, 8B, L1191 L1194, 1992.
- 11. BERNHOLE, J; KAJIHARA, S.A. e ANTO-NELLI, A.; "n-Typedoping and donor incorporation in diamond"; New Diamond Science and Technology, Proc. MRS Int. Conf.: 901-8, 1991.
- 12. MALTA, D.M.; von WINDHEIM, J.A. e
 FOX, B.A.; "Comparison of electronic
 transport in boron-doped homoepitaxial, polycrystalline and natural
 single-crystal diamond"; Appl. Phys.
 Lett. 62(23): 2926 8, 1993.
- 13. MASVOD, A.; ASLAM, M.; TAMOR, M.A. e
 POTTER, T.J.; "Synthesis and electrical characterization of borondoped thin diamond films"; Appl.
 Phys. Lett. 61(15): 1832 4, 1992.
- 14. OKANO, K. et alii.; "Synthesis of B-doped diamond films"; J. Crystal Growth 99: 1192 - 5, 1990.

- 15. ZHANG, X.K. et alii.; "p-type doping of diamond films with a novel organoboron source"; Appl. Phys. A56: 425 - 8, 1993.
- 16. ZHANG, F. et alii.; "Electrical properties of boron-doped polycrystalline diamond films"; Thin Solid Films 216: 279 82, 1992.
- Transtar Boron Nitride Low Temperature Planar Diffusion Source - Catálogo de Fontes Planares da Carborundum, 1978.
- 18. RODRIGUES, C.R.; "Síntese e caracterização de diamantes pelo método CVD para aplicação em dispositivos eletrônicos"; Tese de doutorado, FEE/ UNICAMP, 1993.
- 19. MORRISH, A.A. e PEHRSSON, P.E.; "Effects of surface pretreatments on nucleation and growth of diamond films on a variety of substrates"; Appl. Phys. Lett., 59(4): 417-9, 1991.
- 20. KNIGHT, D.S. e WHITE, W.B.; "Characterization of diamond films by Raman spectroscopy"; J. Mat. Res. 4(2): 385 93, 1989.
- 21. FUJIMORI, N.; NAKAHATA, H. e IMAI, T.; "Properties of boron-doped epitaxial diamond films"; Jpn. J. Appl. Phys.29(5): 824 - 7, 1990.
- 22. OKANO, K. et alii.; "Characterization
 of boron-doped diamond films"; Jpn.
 J. Appl. Phys. 28(6): 1066 71,
 1989.
- 23. PEREZ, J.M. et alii.; "Scanning tunneling microscopy of the electronic structure of chemical vapor deposited diamond films"; Appl. Phys. Lett. 62(16): 1889-91, 1993.
- 24. LANG, N.D.; "Spectroscopy of single atoms in the scanning tunneling microscope"; Phys. Rev.B, 34(8): 5947-50, 1986.