Revista Brasileira de Aplicações de Vácuo, Vol. 12, n.1 e 2, 1993.

Revista Brasileira de Aplicações de Vacuo, Vol. 14, n.1 e 4, 1990

LITOGRAFIA E CARACTERIZAÇÃO DO PROCESSAMENTO DO FOTO-RESISTE As₂s₃

José Brant de Campos, Roberto R. de Avillez, Raul A.Nunes, Sidnei Paciornik

> Departamento de Ciência dos Materiais e Metalurgia, PUC-Rio Caixa Postal 38008, 22452 Rio de Janeiro-RJ Departamento de Física, PUC-Rio Caixa Postal 38071, 22452 Rio de Janeiro-RJ

RESUMO

Filmes finos calcogênicos tem sido produzidos, para a utilização como resiste em processos litográficos^[1-9].

O processamento envolve produção de filmes, sensibilização e revelação. Foram caracterizadas as etapas de processamento, por microscopia eletrônica de varredura e análise por raios-X (EDS), objetivando a otimização dos parâmetros experimentais. A geração dos padrões geométricos foi realizada com o uso de máscaras, onde se obtiveram padrões com dimensões de 15 mícrons.

1. Introdução

O trissulfeto de arsênio (A_sS_3) pertence a uma família de materiais que vem sendo estudado extensivamente. Diversos campos de aplicação tem sido descobertos, como o uso em memórias holográficas[10,11], em fibras óticas para transmissão em IR distante[12,13,14] e como resiste em processos litográficos de alta resolução[1-9,15].

O trissulfeto de arsênio foi inicialmente proposto como resiste para aplicação em microlitografia por Chang e Chen[16], a partir da verificação de que o sistema As-S sofre transformações estruturais quando exposto a uma fonte de radiação UV. Estas transformações estão associadas ao caráter amorfo do material sob a forma de filme fino e da presença do efeito de "photodarkening"[17]. Este efeito altera a região de alta absorção do material, levando seu limite para comprimentos de onda maiores. Ele está acompanhado de transformações estruturais que alteram a taxa de corrosão entre regiões com ou sem iluminação. Verificou-se que a presença de prata dopando o filme, aumenta o contraste entre estas regiões [18], sendo que a difusão é estimulada pela incidência da luz durante a própria litografia. As vantagens da utilização deste resiste inorgânico frente aos resistes comerciais (normalmente orgânicos) já foi destacada^[19].

O processamento litográfico conta com as seguintes etapas:

a) deposição térmica de filmes de

- osos As2S3; ab. abshilten
- b) recozimento;

c) deposição da camada de prata;

d) sensibilização;

e) remoção da camada de prata não difundida;

f) revelação dos padrões geométricos;

g) caracterização das etapas de processamento;

2. Materiais e Métodos

Os filmes de As_2S_3 foram depositados em um sistema de evaporação resistiva em um nível de vácuo sempre melhor que $4x10^{-6}$ mbar e com uma taxa de deposição entre 2 e 3 A/s. O material utilizado é de origem comercial, da Aldrich, apresentando pureza de 99,99%.

O recozimento foi realizado em um forno tubular, com aquecimento de resistências. A amostra é submetida a uma temperatura de 180°C durante uma hora. A atmosfera do forno é purgada por um fluxo de gás inerte durante todo o processo.

A deposição da camada de prata é efetivada por uma imersão em solução de AgNO₃, durante 90s.

Após isto, é realizada a fotolitografia, utilizando-se uma fotoalinhadora, equipamento que permite expor o filme de forma a selecionar as regiões de interesse através do uso de uma máscara. A máscara contém um padrão interdigital, onde os "dedos" possuem uma largura de 13 µm e um espaçamento de 30 µm. A remoção da prata não difundida nas regiões não iluminadas foi realizada através da imersão em várias soluções químicas de HNO₃ e de agentes de fixação. Diversos tempos de imersão foram testados.

A revelação dos padrões é realizada por via úmida, utilizando-se uma solução alcalina de NaOH. Vários testes foram realizados, variando-se a concentração do reagente e o tempo de revelação.

A caracterização do processamento litográfico envolveu a utilização de técnicas de microscopia eletrônica de varredura (MEV), a microscopia ótica e a análise química qualitativa por EDS (espectroscopia por dispersão de energia).

3. Resultados e Discussão

Os primeiros resultados não apresentaram boa qualidade de revelação dos padrões geométricos nem uma boa reprodutividade. Verificou-se que o recozimento dos filmes é de extrema importância para estes parâmetros. As figuras 1 e 2 mostram isto:

Figuras 1 e 2 - Padrão litográfico de amostra não recozida e recozidas respectivamente. Observação referente ao MEV. Alguns problemas foram verificados, como a presença de partículas por toda a superfície do filme, desprendimento completo do filme de resiste durante o processo de corrosão e uma nova revelação completa dos padrões geométricos, havendo sempre um resíduo de material nas regiões não sensibilizadas.

A análise de EDS verificou que estas partículas eram de Ag₂S, resultantes do processo de formação do filme de prata na superfície. Isto indicou que o processo de remoção da prata não difundida não era eficiente. Resolveu-se então trocar o fixador fotográfico por uma solução de HNO3. Realizou-se testes com diversas concentrações de solução, verificando-se que para a concentração de 1:3, o filme apresentava menor resíduo de partículas de prata e melhor morfologia superficial. Isto porque para concentrações intermediárias, 1:4 1:9, a superfície apresentou aspecto semelhante ao fixador fotográfico e para soluções concentradas 1:1 e 1:2, o filme sofreu um ataque superficial. Mesmo assim a presença de partículas permanecia, embora a dimensão típica estivesse entre 1 e 2 µm.

Este problema foi resolvido com a filtragem de todas as soluções químicas com um filtro de 0,22 µm e a utilização de água deionizada de melhor qualidade. Como resultado, o nível de contaminação da superfície dos filmes após o processamento litográfico foi reduzido a valores aceitáveis, obtendo-se um maior controle na qualidade dos perfis litográficos.

Com este resultado, a otimização da etapa de corrosão pode ser efetivada. Os testes de revelação dos perfis litográficos foram realizados com soluções de NaOH nas concentrações de 0,48; 0,60; 0,72 e 0,96% para tempos de imersão de 1 e 6 minutos. Para concentrações superiores a 0,72%, a corrosão dos filmes era total, enquanto que para a concentração de 0,48%, ocorria uma subrevelação dos padrões, mesmo para os tempo mais longos. A concentração ótima foi a de 0,60% e as figuras abaixo mostram os perfis para um tempo de 15 e 30s.

isvando seu llaite para comprimentos di invando seu llaite para comprimentos di transformações estruturais que alteram taxa de corrosão entre regiões com o taxa de corrosão entre regiões com o sem iluminação. Verificou-se que presença de prata dopando o fiima aumenta o contraste entre estas regiõe [13], sendo que a difusão é estimulad pela incidência da luz durante a própri Revista Brasileira de Aplicações de Vácuo, Vol. 12, n.1 e 2, 1993.

Figuras 3 e 4 - Padrões litográficos revelados em solução alcalina (NaOH) durante 30s e 15s, para um tempo de imersão em ácido nítrico de 180s, respectivamente.

Pode-se observar que, para o tempo de imersão de 30s, os padrões litográficos sofreram um ataque superficial, com a abertura de crateras por toda a superfície. Nas amostras de 15s, este grau de ataque está limitado na região da superfície. O sinal de EDS não indicou a presença de prata no interior do filme para as amostras de 30s, indicando que toda a camada dopada com prata teria sido corroída pela solução alcalina.

O tempo de "fixação "(sic) foi otimizado, verificando-se que o melhor resultado era obtido com 60s de imersão, havendo uma redução no nível de ataque superficial. A figura 5 mostra este resultado:

Figura 5 - Padrões litográficos revelados em solução alcalina (NaOH) durante 15s, para um tempo de imersão em ácido nítrico de 40s.

4. Conclusões

Os resultados otimizados representaram um bom domínio no processamento de As₂S₃ para aplicação em microlitografia, apresentando boas perspectivas para a utilização como resiste de alta resolução.

Os perfis litográficos apresentaram boa qualidade, havendo uma melhoria na reprodutibilidade dos resultados e uma maior confiança no entendimento de cada etapa de processamento.

A partir deste ponto, é possível se objetivar a geração de perfis com dimensão próxima do mícron e a realização de testes utilizando-se a técnica de litografia por feixe de elétrons.

5. Agradecimento

Os autores agradecem as agências CNPq, FAPERJ e FINEP pelo apoio financeiro.

6. Referências

- [1] Tai, K.L., Vadimsky, R.G., Kemmerer, C.T.,Wagner, J.S., Lamberti V.E. e Timko, A.G.; J.Vac.Sci. Technol.,17(5) (1980), 1169.
- [2] Yoshikawa, A., ochi, O., Nagai, H. e Mizuzhima, Y.; Applied Physics Letters, 31 (3) (1977), 161.
- [3] Mednikarov, B.; Solid State Technology, maio 1984, 177.
- [4] Burrof, A.; Journal of Physique, 42 (10) (1981) C4-967.

047

Revista Brasileira de Aplicações de Vácuo, Vol. 12, n.1 e 2, 1993.

[5] Chang, M.S.; Hou, T.W.; Chen, J.T.; Kolwics, K.D. e Zemel, J.N.; J. Vac. Sci. Technol., 16 (6) (1979), 1973

- [6] Singh, B.; Beaumont, S.P.; Bower, P.G. e Wilkinson, C.D.W.; Applied Physics Letters, 41 (9), 889, 1982.
- [7] Chern, G.C. e Lauks, I.; Journal of Applied Physics, 53 (10) (1982), 6979
- [8] Singh, B.; Chern, G.C. e Lauks I.; Applied Physics Letters, 45 (1) (1984), 74
- [9] Singh, B.; Chern, G.C. e Lauks, I.; J.Vac.Sci. Technol., 3 (1) (1985), 327
 - [10] Lee, S.G. e Lee, S.S.; Applied Optics 25 (24) (1986), 4512
 - [11] Alimbarashvilli, N.A.; Galpern, A.D.;Dekanozisvilli, G.G. Eligulasvhilli,I.A.;Mosulishvilli,K.L.;P aramonov,A.A. e Smaev, V.P.; Optical Spectroscopy, 66 (4(1989), 552.

- [12] Andriesh, A.M.; Bolshakov, O.V.; Zhitar, V.V. e Popesku, A.A.; Journal of Non- Crystaline Solids, 90 (1987), 565
- [13] Sato, S.; Watanabe, S. e Fujioka, T.;Applied Physics Letters, 48 (15) (1986),960
- [14] Saito, M. e Takizawa, M.; journal of Applied Physics, 59(5), 1986
- [15] Haito, E.; Belford, R.E., Ewen, P.J.S. e Owen, A.E.; Journal of Non-Crystaline Solids, 115 (1989) 129.
- [16] Chang, M.S. e Chen, J.T.; Applied Physics Letters, 33 (10) (1978), 892
- [17] Keneman, S.A.; Bordogna, J. e Zemel, J.N.;Journal of Applied Physics, 49(9), 4663, 1979.
- [18] Yorhikawa, A., Ochi, O., Nagai, H. eMizuzhima, Y.;Applied Physics Letters, 29(10) (1976), 677
- [19] Nunes, R.A.; Tese de Doutorado, Departamento de Física, PUC-Rio.