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ABSTRACT:

The propagation characteristics of
electromagnetic waves in thin films with
nonlinear material are investigated
numerically using variational methods and
finite difference techniques. Both TE and
TM polarizations are considered. It is

observed that hysteresis
can occur.
of the higher order solutions
unstable and may follow a route

may

power increases.

1. INTRODUCTION
Dielectric waveguides,
nonlinear material have
considerable interest in recent years
to their unique, fascinating features,
potential application to devices for
all-optical signal processor, as well
for optical computers [1].
The knowledge of the
characteristics of electromagnetic
in such structures is necessary
to determine the feasibility
suggested devices,
understanding of the physical
associated with nonlinear
systems. Of particular interest is
study of the stability characteristics
waves guided by such structures, as
will determine the limit of
usability.
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Propagation Method (BPM). In [8], the wave

propagation is simulated by means of the
finite element method. So far, no
stability analysis has been carried out
for nonlinear TM guided waves.

This paper presents a new formulation for

the stability analysis of nonlinear guided
waves., It was developed [9]-[11] in order
to investigate to what extent the results
and conclusions reported in the literature
depend on the numerical techniques used.
It is applied to both TE and TM nonlinear
guided waves.

2. FORMULATION

Figure 1 shows the waveguides considered,
where the three layers can be of nonlinear
material.
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Figure 1: Nonlinear waveguide.
For TE polarization, the nonlinear

refractive index is written as [13]:

1l =

A p o

2 e
n + ajf(s) . j =8, G B

where n represents the Tow power
refractive index, which may be a function
of yai-N represents the nonlinear
coefficient of medium j (j=s, f, c¢) and
f(S8), a function of the signal intensity_S.
For Kerr-type nonlinearity, f(s) = |E|?,
where E denotes the electric field. 1In
this case, each coefficient a is then
written ae n.n_ ¢ v N jbeing the
nonlinear coeffictént,® ¢ EHe free space
permittivity, and ¢ the Velocity of light
in vacuum. 2

Assuming that the waveguide is composed of
lossless media, and that a/84X = 0, a
variational expression for the propagation
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constant g for TE waves 1is written

[9)-[11]:

ﬁz=[_lm[kiﬁ2Ef— f_ggg-)zjdy]-[_lwsjdy]'zz}

as

where E is the X-component of the
electric™ field, Kk is the free space
wavenumber, and the® factor expl[j(wt=gz)]
is implicit.

Next, the Y-axis 1is discretized, finite
differences are used to evaluate the
derivative in the expression for B8°, and
the integrals in (2) are approximated in

terms of the discretized field.

The stationary property of pa is then used
through the differentiation of (2) with
respect to each of the variables E i
where E  is the value of E at y = y *) i
g1%eedli o, B bosndng being set to
zero. The following stalh8ird eigenvalue
problem is arrived at [9]-[11]:

[A)-{E} = (Bh)®.-(E ) (3)

where h is the distance between successive
points along the Y-axis, [A] is a real,
symmetrical and tridiagonal matrix, whose
diagonal elements are given by [9]-[11]:

(i=1,2,...,N)

K . = (e WY'RE - 2 (4)

and the off-diagonal elements are all
equal to unity.
The total guided power per unit length
along the X-axis is calculated as
[9l1-[11]:
B P

P = —W;'z:*“‘l Eady (5)

where 4 represents the intrinsic

impedance®of vacuum.

Considering Kerr-type nonlinearity, for TM
polarization the nonlinear permittivity is
written as [10],[14]:

€ =n
x k]
= &% z=n%®+ ¢ cn’n -[|E | %+ y|E |‘]
yJ v J 4 &4 Y z
% 2% n T 4" % AN -[7|E |2+ |E in
z] z] J © J 23 ¥y ¥
(6)
where € , ¢ ;  and e are diagonal
elementdlof thé permittivity tensor, n
represents the low power refractive index
of medium j. E and E are, respectively,
the Y- and Z-cdmponents of the electric
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field. The constant y takes on different
values, depending on the nonlinearity
mechanism [14], and will here be fixed as
1s

As in the case of TE polarization, a
variational expression is first developed
for the propagation constant g [9],[11]:

@
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Following the same steps as in the case of

TE polarization, the standard eigenvalue
problem is obtained [9],[11]:

(B]-{H }=(Bh)"-(H } (8)
where H is the X-component of the
magnetic*field, [B] is a real tridiagonal
matrix, whose elements are given by
(311110

g [ kit - - L ] ¢

o zi-1 zi ¥
< yi
Bs.ui = €y (9)
E
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The total guided power per unit length

along the X-axis is calculated as:
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(10)

The solution of the eigenvalue problems
yields the propagation constant g and the
electric field profile, in the case of TE

waves, or the magnetic field profile, in
the case of TM waves.

As in the presence of nonlinearity the
refractive index distribution depends on
the local field intensity, an iterative
scheme is used 1in the solution of the
eigenvalue problems (3) and (8). For each
polairization, the eigenvalue problem is

initially solved assuming negligible power
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lTevel. The resulting electric (or
magnetic) field 1is then scaled to the
required power. level, and used to update
the refractive index distribution due to

the nonlinear contributions, and the
eigenvalue problem is solved again. This
iterative scheme continues until

consistent solutions are obtained.

3. RESULTS

In all the results presented here, only
Kerr-type nonlinearity was considered, 1in
order to allow comparison with other
results in the literature.

Figure 2 shows the variation of the
fundamental mode TE effective refractive
index B/k with the®guided wave power for
a structufe composed of a 1linear film,
whose thickness is 1.25um and refractive
index 1is 1.57, bounded by identical,
semi-infinite nonlinear substrate and
cladding, with a 1low power refractive
index of 1. 55. and nonlinear coefficient
of 1.0x10" " m?/w. The wavelength is
0.515um.
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Figure 2: Yariation of the TE effective

refractive index
wave power.

°with guided

This fundamental mode presents two
solutions: one, with a symmetrical
electric field distribution with respect
to the X-axis, that evolves from the
corresponding solution in a similar,
linear waveguide. This solution is
represented by curve $ in Figure 2. For
power levels above a certain value, a
second solution appears, in which the
electric field distribution is
asymmetrical with respect to the X-axis,
curve A in Figure 2. It was observed that,
for power levels where the asymmetrical
solution exists, the symmetrical solution
is unstable, i.e. it 1s not maintained
along the iterative scheme. This situation
is illustrated in Figure 3, which shows
the evolution of the solution with the
iterative scheme. In this Figure it is
clearly seen that the symmetrical solution
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gives place to the asymmetrical solution,
which is maintained indefinitely along the
iterative scheme.

Figure 3: Evolution of the TE electric
field profile with thd iterative
scheme, with P = 95mW/mm.

Figure 2 also shows results as read from
reference | [ Ty which presents an
analytical, stationary solution for the
nonlinear, one-dimensional wave equation.
The results are seen to agree very well.
In Figure 2 it can be seen that hysteresis
takes place, represented by a sudden
change of the effective index as the
guided wave power is increased. It was
observed [9], [10], [12], that this effect
is determined mainly by the film
thickness, and that it can occur at low
power levels. Such effect has potential
application in fast optical switches or
memory loops [1].
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Figure 4: Variation of the TM effective

refractive index
wave power.

°with guided

Figure 4 shows, for the TM mode, the
variation of the effective® refractive
index with guided wave power in a
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structure with the same parameters as that

of Figure 2, with the exception of the
film thickness and wavelength, which are
now 1.0um and 0.5145um, respectively.
Again, as the structure is physically
symmetrical, two solutions are possible,
one symmetrical and one asymmetrical. As
in the case of the TE mode, the

symmetrical solution is unstable for power

levels where the asymmetrical solution
exists.
In physically asymmetrical structures,

only one solution exists, for both TE and
TM modes, which is stable for all power
leVels (91, 1), In asymmetrical
structures the occurrence of hysteresis is
also possible, determined mainly by the
film thickness [9], [10].

Figure 5-a shows the variation of the TE
effective refractive index in a waveguidé
whose parameters are: n_=1 57. n -0. n =
n=1.55, n_=2n_ = 2.10"°m*/w,% t=2.08m,
afd the wavélengtR®is 0.515um. The solid
line represents solutions for which the
iterative scheme converged to a single
value of the effective index and a single
profile for the electric field. The dotted
lines represent solutions for which the
iterative scheme did not converge to a
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Figure 5: Bifurcation diagram for the

variation of the TE
refractive index
wave power,

effective
with guided

single value of the effective index (and a
electric field single profile), but
resulted in multiple values, which are
periodic with respect to the iterations.
Initially, period two oscillations are
observed, which give place to period four
oscillations as the guided wave power

increases, and then to period eight
oscillations, and so on, until chaotic
oscillations appear. The boxed part of
Figure 5-a is enlarged in Figure 5-b,

showing clearly the transition to chaos
through period doubling.

The analytical stationary solution of
reference [7] and [13] was used as
comparison and mainly to help identifying
stable and unstable solutions. Figure 6
shows two of the three branches of the
analytical, stationary solution for the
TE mode in the same waveguide as in
Fidures 5,
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Figure 6: Analytical dispersion curve for
the TE1 mode.

The effective refractive index and
electric field profile given by this
analytical solution were wused as input
data for the eigenvalue problem and the
iterative scheme. Identical results as in
Figures 5 were obtained. It was observed
that at low power levels, i.e. the initial
part of branch I in Figure 6, the solution
was maintained along the iterative scheme.

For power where the two branches existed
simultaneously, period two oscillations
were observed. The oscillation period

doubled along branch 1I as the guided wave
power increased. The second part of branch
1, after the peak, showed a different
behavior: after a few iterations, the
solution converged to values corresponding
to points on the other side of the branch
(before the peak). These results are
summarized in Figure 7, which shows the
evolution of the effective index with the
iterative process, for certain power
levels.

It is interesting to note

that once the




Revista Brasileira de Aplicacdes de Vacuwo, Yol, 10, n.2, 1991.

oscillations start, points originally on
either branch fit the same bifurcation

diagram, as illustrated 1in Figure 5-b, 1-555§
where the squares correspond to points 1 el iy aekbakd - J<3
| originally on branch I and the dots, to x1.564 1 .
I points originally on branch II.According > : A, A
| to these results, the first part of branch C1.562 i Tthey 3
] I, up to the power level where branch 1II SR ki
starts (solid 1line 1in Figures 5) is
considered as stable. The second part of 221 o601
branch I, after the peak and not 0
co-existing with branch II, is considered L1.558
as unstable. A1l the rest of the solution W R Reference (14)
is considered as unstable and may follow a 556
route to chaos through period doubling as 1. 1020 30 40 0 5 70
“ the guided wave power increases (dotted Power
lines in Figures 5).
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Figure 7: Evolution of TE effective Figure 8: Bifurcation diagram for the
refractive index for points on variation of the TM_ effective
branch I of Figure 6. refractive index with guided
(a)P=13.10346571mW/mm, initial B/k :1.56470 wave power.
\ (b)P=15.02796935mW/mm, initial B/k®:1.560

(c)P=18.18631152mW/mm, initial B/k°:1.56465
(d)P=27.05117944mW/mm, initial B/k”:1.56422 material. For the fundamental modes TE
il and TM it was observed that hysteresig

{ can o&cur and that, in physically
Figures 8 show a bifurcation diagram for symmetrical structures, the symmetrical
the TM_ mode in a waveguide with the same solution is unstable. It was observed that
parameiers as in Figures 5 and 6, except part of the solution for TE and TM modes
for n_ =n_ =1.0x10"°m* /W and the is unstable and followed a route to chaos
| wavelength 1&° 0.5145um. Again it was through period doubling as the guided wave
| observed that part of the solution was power increased. In general, the stability
i unstable, dotted 1lines, and followed a characteristics of TE and TM waves are
[ route to chaos through period doubling as similar.
the guided wave power increased. Figure
8-a also shows results as read from It is worth mentioning that the present
reference [44q; which presents an solution can be applied to non Kerr-type
analytical, stationary solution for nonlinearities, as well as to structures
| nonlinear TM waves. A very good agreement with a gradual Tow power refractive index
{ is seen for the stable part of the distribution. It can also be applied to
‘ solution. As the analytical solution of multilayered structures.
. reference [14] is stationary, it is unable
1 to predict the unstable part. As a final remark, the solutions here
considered as stable showed excellent
agreement with the analytical, stationary
| 4. CONCLUSION solution found in the literature. As not
| much result is available in the literature
f A numerical solution was developed and concerning the stability characteristics
i applied to the analysis of TE and TM waves of the higher order modes, no comparison
L in waveguides containing nonlinear could be made for the solutions here
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considered as unstable. Undoubtedly, more T = cAhpiyasth B J.o Sooaton,; . Gietl.
investigation is required on this subject, Stegeman, e J. V. Moloney, IEEE J.
especially experimental investigation, in Quantum Electron., Vol. QE-22, 1986,
order to confirm the theoretical and pp. 984-987.

numerical predictions.
8 - K. Hayata e M. Koshiba, Opt. Lett.,
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