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ASSTRACT:

The propagation characteristics of
electromagnetic waves in thin films with
nonlinear material are investigated
numerica"y using variational methods and
f1nite difference techniQues. Both TE and
TM polarizations are considerado lt is
observed that hysteresis and bistability
can occur. lt is also observed that part
of the higher arder solutions. mar be
unstable and mar follow a route to chaos
through period doubling as the guided wave
power increases.

1. INTRODUCTION

Dielectric waveguides, or thin filma, with
nonlinear material have attracted
considerable interest in recent Y9ars due
to their unique, fascinating features, and
potential application to devices for an
all-optical signal processar, as well as
for optical computara [1].

The knowledge of the propagation
characteristics of electromagnetic waves
in such structures is necessary not only
to determine the feasibility of the
suggested devices, but also to further the
understanding of the physical phenomena
associated with nonl1near guided waves
systems. Of particular interest is the
study of the stability characteristics of
waves guided by such structures, as this
will determine the limit of their
usability.

Stability analyses of TE nonlinear guided
waves can be found in the literatura, e.g.
[2]-[8]. References [2]-[7] present the
stability analysis of TE waves guided by a
thin film bounded by semi-infinite
nonlinear media, while reference [8] deals
with TE waves guided by a nonlinear film
bounded by semi-infinite linear media.
With the exception of reference [2]. where
a stability theory was developed for the
fundamental TE moda, the other
conclusions and ~esults reported in the
literatura [3]-[8] were obtained by
launching a specific electric field
profile into the waveguide and numerically
simulating its propagation down the
waveguide. Reference [3]-[7] have in
common the numerical method employed 1n
the simulated propagation: the Seem

Propagation Method (BPM). ln [8], the wave
propagation ;s simulated by means 01 the
finite element method. So far, no
stability analysishas been carried out
for nonlinear TM guided waves.

This paper presents a new fonmulation for
the stability analysis of nonlinear guided
waves. It was developed [9)-[11) in arder
to investigate to what extent the resulta
and conclusiona reported in the literatura
depend on the numerical techniquee usado
It ;s appl;ed to both TE and TM nonlinear
guided wavea.

2. FORMULA TION

Figure 1 shows the waveguides considered,
where the three layere can be of nonlinear
material.

i\
Q

y

Lz i\
t

i\ .
Figure 1: Nonlinear waveguide.

For TE polarization, the nonlinear
refractive index ;s wr;tten as [13]:

i\2= n2 + a f(S)
j j j

j = s, f, c (1)

where n representa the low power
refracti~e index, which may be a function
of y, a representa the nonlinear
coeff;c;e~t of medium j (j=s, f, c) and
f(S), a functionof the 8igna 1 intensi ty S. .

For Kerr-type nonlinearity, f(S) = IEI2,
where E denotes the electric field. In'
this case, each coefficient a is then
written ae n n € c, n jbeing the
nonlinear coeff~c~~nt,O € t~e free space
permitt;vity, and c the ~elocity of light
. o
1n vacuum.

Assumin; that the waveguide ia composed of
108s1es8media, and that a/ax = O, a
var;ational expre8sion for the propagation
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TE ;s written asconstant p for
[9]-[11]:

[

a> dE

] [

a>

]

- 1

fJ2= J [k:n2E:- (--iy)2]dY , J E:dY (2)

waves

where E ;s the X-component of the
electr;cXf;eld, k ;s the free space
wavenumber, and theO factor exp[j(~t-fJz)]
is implícito
Next, the Y-axis is discretized, finite
differences are used to evaluate the
derivativa in the expression for 82, and
the integrals in (2) are approximated in
terms of the discretized field.

The stat;onary property of p2 ;s then used
through the differentiation of (2) with
respect to each of the variables E ,
where E is the value of E at y = y x: i
= 1, 2,x~..,N, E and E bein9 set to
zero. The follow'n9 sta~aArd eigenvalue
problem is arrived at [9]-[11]:

[A].{E} = (fJh)2.{E )x x
(3)

li
i

where h is the distance between successive
points alon9 the Y-axis, [A] ;s a real,
symmetrical and tridiagonal matr;x, whose
diagonal elements are g;ven by [9]-[11]:

A = (k h)2n2 - 2
11 ° 1

(i=1,2,...,N) (4)

elements a11and the off-diagonal
equal to unity.

The total guided power par unit length
a10n9 the X-axis is calcu1ated as
[9]-[11]:

are

P =

a>

fJ r E2dY
2k Z Ib x° ° -

where Z representa
impedanceoof vacuum.

the

Considering Kerr-type nonlinearity, for TM
po1arization the nonlinear permittivity is
written as [10],[14]:

where E: , E: , and E: are diagonal
element!Jof t~~ permittiv'ty tensor, n
representa the low power refractive inde*
of mediumj. E and E are, respectively,
the Y- and l-componente of the electric

~ - ---

field. The constant 1 takes on different
values, depending on the nonlinearity
mechanism [14], and will hera be fixed as
1.

As in the case of TE polarization, a
variationa1 expression i8 first developed
for the propagation constant fJ [9],[11]:

p2:

a> O)

-I ~ (dHx/dy)2dY -k:-I H: dy
z

(7)
CD

r~H: dy-Ib E:
y

Following the sarna steps as in the case of
TE polarization, the standard eigenvalue
problem is obtained [9],[11]:

[B].{H }:(fJh)2'{H )x x
(8)

where H is the X-component of the
magneticXfield, [B] is a real tridiagonal
matrix, whose elements are given by
[9],[11]:

B =
(
kZh2 -

1 i o I:
z 1- 1

1
)~ 'E:

zl yl

E:

B =~
1 ,1+ 1 E:z 1

(9)

B 1 -1,1 -

E:

!.!
E:

z 1 - 1

The solution of the eigenvalue problema
yields the propagationconstantfJ and the
electric field profile, in the case of TE
waves, or the magnetic field profile, in
the case of TM waves.

As in the presence of nonlinearity the
refractive index distribution dependa on
the local field intensity, an iterative
scheme is used in the solution of the
eigenvalue problema (3) and (8). For each
polal"'ization,the eigenva1ue problem is
init1ally solved assuming negligible power
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(5)
The total guided power par unit length
alon9 the X-xis is calculated as:

intr;nslC
Z fJ

O)

- 1 ° S H2dY
(10)P --Z' k E: x

° -a>Y

E: = n2
x J J

E: = n2 = n2 +
E: cn2n '(IE 12+ 11E 12)yJ yJ J ° J 2J Y z

E: = n2 = n2 +
E:cn2n '(11E 12+ IEz 12)zJ zJ J ° J 2J Y

(6 )
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level. The resulting electric (or
magnetic) field is then scaled to the
required powe~ level, and used to update
the refractive index distribution due to
the nonlinear contributlons, and the
eigenvalue problem is solved again. This
iterative scheme continues until
consistent solutions are obtained.

3. RESULTS

In all the resulta presented hera, only
Kerr-type nonlinearity was considered, in
order to allow comparison with other
resulta in the literatura.

Figure 2 shows the yariation of the
fundamental moda TE effective refractive
index P/k with theOguided wave power for
a structu~e composed of a linear film,
whose thickness is 1.25~m and refractive
index is 1.57, bounded by identical,
Gemi-infinita nonlinear substrate and
cladding, with a low power refractive
index of 1.55, and nonlinear coefficient
of 1.0x10.9m2/w. The wavelength is
O.515~m.
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Figure 2: Variation of the TE effective
refractive index °with guided
wave power.

f

This fundamental moda presente two
solutions: one, with a symmetrical
electric field distribution with respect
to the X-axis, that evolves from the
corresponding solution in a similar,
linear waveguide. This solution is
represented by curve S in Figure 2. For
power levels above a certain value, a
second solution appears, in which the
electric field distrtbution is
asymmetrical with respect to the X-axis,
curve A in Figure 2. It was observed that,
for power levels where the asymmetrical
solution exista, the symmetrical solution
is unstable, i.e. it is not maintained
along the iterative scheme. This situation
is illustrated in Figure 3, which shows
the evclution of the solution with the
iterative scheme. In this Figure it is
clearly seen that the symmetrical solution

l

t

I
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gives placa to the asymmetrical solution,
which is maintained indefinitely along the
iterative scheme.
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Figure 3: Evolution of the TE electric
field profile with thA iterative
scheme,with P = 95mW/mm.

Figure 2 also shows resulta as read from
reference [13], which presente an
analytical, stationary solution for the
nonlinear, one-dimensional wave equation.
The results are seen to agree very well.
In Figure 2 it can be seen that hysteresis
takes placa, represented by a sudden
change of the effective index as the
guided wave pcwer is increased. It was
observed [9], [10], [12), that this effect
is determined mainly by the film
thickness, and that it can occur at low
power levels. Such effect has potential
application in fast optical switches or
memory loops [1].
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Figure 4: Variation of the TM effective
refractive index °with guided
wave power.

Figure 4 shows, for the TM moda, the
variation of the effectiveO refractive
index with guided wave power in a
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structure with the sarna parameters as that
of Figure2, with the exception of the
fi 1m thickness and wavel ength , which are

now 1.0~m and 0.5145~m, respectively.
Again, as the structure is physically
symmetrical, two solutions are possible,
one symmetrical and one asymmetrical. As
in the case of the TE moda, the
symmetrical solution is unstable for power
levels where the asymmetrical s01ution
exista.

In physica"y asymmetrical structures,
only one solution exista, for both TE and
TM modas, which is stable for a11 ~ower
le~e1s [9], [11]. In asymmetrica1
structures the occurrence of hysteresi8 is
a180 p08sib1e, determined main1y by the
fi1m thickne88 [9], [10].

Figure 5-a shows the variation 01 the TE
effective refractive index in a waveguide

whose parameters are: n =1957, n =0, n =
n =1.55, n = 2n = 2x{0. m2/W,2tt=2.0~m,
a~d the wavi'engt~Ois 0.515~m. The solid
1ine representa s01utions for which the
iterative scheme converged to a sing1e
value of the effective index and a sing1e
profi1e for the e1ectric fie1d. The dotted
1ines represent s01utions for whích the
iterative scheme díd not converge to a
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Figure Bifurcation diagram for the
variation of the TE effective
refractive index ~ith guided
wave power.

5:

single value of the effectíve index (~nd a
electric field sing1e profi1e), but
resulted in multiple va1ues, which are
periodic with respect to the iteratíons.
Initially, period two 08cillations are
observed, which give placa to period four
osci1lations as the guided wave power
increases, and then to period eight
oscil1ations, and so on, until chaotic
oscillations appear. The boxed part of

. Figure 5-a is enlarged in Figure 5-b,
showin; clearly the transition to chaos
throu;h period doub1ing.

The ana1ytical stationary s01ution of
reference [7] and [13] was used as
comparison and main1y to help identifying
stable and unstable solutions. Figure 6
shows two of the three branches 01 the
analytical, stationary solution for the
TE moda in the sarna waveguide as in
Figures 5.
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Figure 6: Analytical dispersion curve
the TE moda.

1
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2

The effective refractive index and
electric field profile given by this
analyticalsolutíon were used as input
data for the eigenvalue problem and the
iterative scheme. Identical resulta as in
Figures 5 were obtained. It was observed
that at 10w power levels, i.e. the initial
part of branch I in Figure 6, the solution
was maintained along the iterative scheme.
For power where the two branches exísted
símultaneously, period two oscillations
were observado The oscillation period
doubled alon; branch 11 as the guided wave
power increased. The second part of branch
I, altar the peak, showed .a different
behavior: altar a few iterations , the
s01ution converged to values corresponding
to points on the other side of the branch
(before the peak). These results are
summarized in Figure 7, which shows the
evolution of the effective index with the
iterative process, for certain power
1evels.

It ia interesting to note that anca the
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oscillationsstart, points originally on
either branch fit the sarna bifurcation
diagram, as i Jlustrated in Figure 5-b,
where the squares correspond to points
originally on branch I and the dota, to
points originally on branch II.According
to these resulta, the first part of branch
l, up to the power level where branch 11
starts (solid line in Figures 5) is
considered as stable. The second part of
branch I, after the peak and not
co-existing with branch 11, is considered
as unstable. All the rest of the solut;on
;s considered as unstable and may follow a
route to chaos through period doubling as
the gu;ded wave power increases (dotted
lines in Figures 5).
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Figure 7: Evolution of TE effective
refractive index for points on
branch I of Figure 6.

(a)P=13.10346571mW!mm, initial ~!k :1.56470
(b)P=15.02796935mW/mm, initial ~/ko:1.560
(C)P=18.18631152mW/mm, initial ~/ko:1.56465
(d)P=27.05117944mW!mm, init;al ~/ko:1.56422o

Figures 8 show a bifurcation d;agram for
the TM moda in a waveguide with the sarna
parameters as in Figures 5 and 6, except
for n =n =1.0x10-9m2/w and the
wavelen§th i§o 0.5145pm. Again it was
observed that part of the solut;on was
unstable, dotted l;nes, and followed a
route to chaos through period doubling as
the guided wave power increased. Figure
8-a also shows resulta as read trem
reference [14], which presente an
analytical, stationary solution for
nonlinear TM waves. A very good agreement
is seen for the stable part of the
solution.As the analytical solution of
reference [14] is stationary,it is unable
to predict the unstable parto

4. CONCLUSION

A numerical solution was developed and
applied to the analysis of TE and TM waves
in wavegu;des containing nonlinear
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Figure 8: Bifurcation diagram for the
var;ation of the TM effective
refractive index ~ith guided
wave powe r .

material. For the fundamental modas TE
and TM it was observed that hysteresig
can oêcur and that, in physically
symmetrical structures, the symmetrical
solution is unstable. It was observed that
part of the solution for TE and TM modas
is unstable and followed a toute t01 chaos
through period doubling as the guided wave
power increased. In general, the stability
characteristics of TE and TM waves are
similar.

It is worth mentioning that the present
solution can be applied to non Kerr-type
nonlinearities, as well as to structures
with a gradual low power refractive index
distribution. It can also be applied to
multilayered structures.

As a final remark, the solutions hera
considered as stable showed excellent
agreement with the analytical, stationary
solution found in the literatura. As not
much result is available in the literatura
concerning the stability characteristics
of the higher arder modas, no comparison
could be made for the solutions hera
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consideredas unstable. Undoubtedly, more
investigation is required on this subject,
especially experimental investigation, in
arder to co~firm the theoretical and
numerical predictions.
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