Active species in Ar-N2-H2-CH4 flowing microwave discharges for hard coatings A. Ricard, H. Malvos and H. Michel* LPGP - CNRS - Bat 212, Université Paris-Sud 91405 ORSAY - FRANCE * LSGS - CNRS - Ecoles des Mines - Parc de Saurupt 54 042 NANCY - FRANCE #### Abstract: High quality iron nitrided layers have been obtained by using flowing microwave post-discharges in Ar-N₂-H₂-CH₄ mixtures The afterglow is characterized by emission of spectral bands from N_2 (B,V' = 11-8) and CN (B,V' = 7) radiative states, resulting from N + N and C + N recombination reactions, respectively. The N and C atom densities have been determined by N0 titration for N atoms and from band intensities of the spectra emitted by the N + N and C + N reactions. In conditions of 40 Torr - 120 watts, 2.45 GHz discharges with Ar - 11% N_2 - $5 \times 10^{-5} \mathrm{CH_4}$, it has been determined [N] $\sim 5 \times 10^{-15}$ cm⁻³ and [C] $\sim 10^{13}$ cm⁻³ at a time of 10^{-1} sec. in the post discharge. With such N and C atom densities in the post-discharge, thick ϵ - Fe_{2.3} N coatings (20-22 μ m) have been produced, without oxide layers, for treatment times of 3 hours and a substrate temperature of 550° C. #### 1. Introduction A growing interest in the use of flowing nitrogen postdischarges has recently appeared in the field of surface coating processes. For instance, coatings of Fe₄N- γ ' of 4- 6μ m thickness (with a steel substrate temperature of 840K and a processing time of one hour) have been obtained in a microwave (2450 MHz, 70 W) induced flowing postdischarge generated from an Ar-3% N₂ gas mixture. It has been established that the thickness of γ ' coating is increasing wiyh N- atom densities which have been measured by N0 titration [1]. The afterglow of the Ar-N₂ flowing discharge is characterized by the emission of the N₂(B,V' = 11 - 8) radiative states, resulting from the recombination of N-atoms. Also in the afterglow, a strong emission of CN coming from impurities has been observed. Particularly, a strong intensity of the CN(B,7 - X,7) band results from the C + N recombination process [2]. In the present paper, production of N atoms in the $Ar-N_2-H_2$ and $Ar-N_2-CH_4$ post-discharges is first analysed from the afterglow coming from the $N_2(B,V'=11-8)$ states. The Catom densities have been determined in the $Ar-N_2-CH_4$ post-discharge from N-atom densities which is measured by N0 Fig. 1 Microwave post-discharge reactor. titration and from measurements of band intensities which are emitted by the N + N and C + N recombination reactions. Finally, the chemical composition and thickness of nitrided layers on iron substrates are correlated to the N and C atom densities in the post-discharge. # 2. The microwave plasma reactor in flowing Ar-N $_2$ -H $_2$ - CH $_4$ gases The microwave post-discharge reactor used for steel surface nitriding is reproduced in Fig. 1. The plasma is initiated in a 0.5 cm diam. quartz tube with a surfaguide structure [3]. The post-discharge runs into a reactor of a diam. 3 cm and length of 120 cm at a distance of 70 cm from the sufraguide structure. The Fe-0.1% C samples are cylinders of a diam. of 1 cm and length of 1 cm. They are heated at the nitriding temperature with a conventional heating device. As indicated by the phase diagram of Fig.2, ϵ , γ ', and α layers can be obtained at 840 K and the austenite γ layer is obtained in addition at T = 880K. The sample temperature is monitored by a chromel alumel thermocouple whose hot junction is placed 2 mm under the treated surface. The afterglow has been analyzed by emission spectroscopy using a Jobin-Yvon HR 640 spectrometer with a 1 200 groove diffraction grating and a Hamamatsu R 636 photomultiplier connected to a picoammeter and a chart recorder. Fig. 2 Fe-N phase diagram. # 3. Production of N atoms in Ar-N2-H2 and Ar-N2-CH4 post-discharges In N_2 flowing discharges, the N atom density is determined by introducing N0 in the post-discharge as shown in Fig. 1. The following reactions occur at low N0 flow rate: $$N+N0 \rightarrow N_2 + 0$$, (a) $$N+0+M_2 - NO(B) + M_2$$ (b) $NO(B) - NO(X) + hv (NO_6)$ At high N0 flow rate, all the N atoms being recombined, it follows: $$0 + NO + M_2 - NO_2^* + M_2$$ (c) The change from $N0_{\beta}$ to the $N0_2$ - continuum is produced when the N0 and N flow rates are equal. The variation of the NO_{β} band head intensity at 320 nm as a function of Ar-1.3% NO flow rate is reported in Fig. 3a at 23 Torr in N_2 and in Fig. 3b, at 200 Torr in Ar-3% N_2 . The decrease of NO_{β} intensity is followed by a tenuous green emission of NO_2^* which has been detected at 506 and 562.4 nm (Fig. 3). The extinction point corresponds to the intersection of NO_{β} and NO_{2}^{*} curves from which the N atom density is obtained: $N/N_{2} = 0.1\%$ in N_{2} discharge at 23 Torr and $N/N_{2} = 2\%$ in Ar- 3% N_{2} discharge at 200 Torr [4]. In N_{2} afterglow, the emission spectra is characterized by first positive $N_{2}(B, V'-A, V'')$ emission whose high vibrational levels are out of equilibrium with a maximum on $N_{2}(B, V' = 11)$ for Ar-(>10%) N_{2} gas mixtures (Cf. Fig. 4). This maximum value is the result of the N atom Fig. 3 Intensities of NO_{β} and NO_{2}^{*} bands versus N0 flow rate for N titration by N0. recombination following the reaction: $$N + N + N_2 - N_2 (5\Sigma) + N_2$$ (d) $$N_2 \ (^5\Sigma) = N_2 (B, V' = 11)$$ N_2 (B, V' = 11) – N_2 (A, V') + hv (first positive) where the N_2 (B, V' = 11) state is produced from the N_2 ($^5\Sigma$) potential curve-crossing [5]. The band intensity (I_{N_2}) from N_2 (B, 11) can be written as it follows: $$I_{N_2} = C(\lambda_1) \frac{h_C}{\lambda_1} A_1 [N_2(B, 11)]$$ (1) where $C(\lambda_1)$ is the spectral response at λ_1 of the optical system (Cf. Fig. 1), $\lambda_1 = 580.4$ nm and $A_1 = 6.2 \times 10^4$ sec⁻¹ [6]. The N_2 (B,11) state density is given by the following equation: $$[N_2(B,11)] = \frac{[N]^2[M_2]k_1}{v_1^r + [M_2]k_1^2}$$ (2) where $C(\lambda_1)$ is the spectral response at λ_1 of the optical system (Cf. Fig. 1), $\lambda_1 = 580.4$ nm and $A_1 = 6.2 \times 10^4$ sec⁻¹ [6]. Fig. 4 Ist positive $N_2(B, V'-A, V'')$ intensity in Ar-(> 10%) N_2 post-discharge. where $v_1^r = \sum A_{1j} = 2.3 \times 10^5 \text{ sec}^{-1}$ and $k_q^1 (Ar) =$ 0.2 x 10^{-11} cm³ sec⁻¹ and $k_q^1 (N_2) = 2.8 \times 10^{-11}$ cm³ sec⁻¹ [7]. It follows from eq. 1 and 2 that : (0) 0.1% (6) NO $$I_{N_2} = K_1 [N]^2$$ (3) where K_1 is related to the rate coefficients in eq. 1 and 2. Then the N- atom density can be determined from I_{N_2} intensity measurements after calibration by NO. Results are reported in Fig. 5 for Ar-N₂-H₂ gas mixtures at a time $\Delta t = 10^{-1}$ sec in the post-discharge. Such a decrease of N atom density with H₂ has been analysed in ref. 8 as resulting from N₂ (V) + H₂ quenching reactions. In condition of a N₂ - 1% H₂ d.c discharge with E/N = 5 x 10^{-16} V cm², T_v = 4 000 K and T_g = 400 K, the N₂ dissociation rate is less than 10^{-14} cm³ sec⁻¹, much lower than in pure N₂ discharge where it is 3 x 10^{-10} cm³ sec⁻¹. # 4. Production of C atoms in Ar-N2-CH4 post-discharges In the blue part of the Ar - (> 10%) N_2 afterglow, a strong emission of CN coming from olefin impureties has been observed as reproduced in Fig. 6 [2]. Particularly, a strong intensity of CN(B, 7 - X,7) is the result of the following recombination process: $$C+N+M_2 - CN(B,7) + M_2$$ (e) By comparing the intensities of CN(B,7-X,7) and N_2 (B, 11-A, 7) bands in the afterglow, the C- atom density can be estimated from the N- atom density obtained by N0 titration. The band intensity (I_{CN}) from CN(B,7) is given by the following equation: Fig. 5 N- atom density versus $x/[N_2]$ in Ar-11%N₂-x CH₄ and Ar-1.4% N₂ -x H₂ gas mixtures. Fig. 6 CN(B, V' - X, V") emission intensity from olefin impurity in Ar-(>10%) N_2 post-discharge. $$I_{CN} = C(\lambda_2) \frac{hc}{\lambda_2} A_2 [CN(B,7)]$$ (4) where $\lambda_2 = 384.7$ nm and $A_2 = 2.5 \times 10^7$ sec⁻¹ [9]. The CN(B,7) state density is given by : $$[CN(B,7)] = \frac{[C] [N] k_2}{v_2^r + [M_2] k_q^2}$$ (5) where $v_2^x = 2.5 \times 10^7 \text{ sec}^{-1}$ and k_q^2 (Ar) = 10^{-11} cm^3 sec⁻¹ [10]. The recombination rate coefficient in eq. 2 and 5 are $k_1 = 10^{-33} \text{ cm}^6 \text{ sec}^{-1}$ [4] and $k_2 = 10^{-32} \text{ cm}^6 \text{ sec}^{-1}$ recvista Brasheria de Aplicações de Vacuo, Vol. 11, n.1, 1992. [11], respectively. In condition of Ar - 11% N_2 - (x < 10^{-3}) CH₄ discharge at 44 Torr with the optical spectrometer as reproduced in Fig. 1, it can be calculated that: $$\frac{[C]}{[N]} = 4.4 \times 10^{-4} \frac{I_{CN}^{c} (7.7)}{I_{N2}^{c} (11.7)}$$ (6) In equation 6, It is the total band intensity. For $$\frac{[CH_4]}{[N_2]}$$ = 5 x 10⁻⁴, the N-atom density is 4.9 x 10¹⁵ cm⁻³ and the C-atom density is found to be 1.6 x 10⁻¹³ cm⁻³. The uncertainty is about 20% for N atom density but it is only the order of magnitude of C atom density which is obtained from this chemiluminescent method as a result of cumulative uncertainties in k- rate coefficients of eq. 2 and 5. When the N atoms are the most populated active species in the post-discharge, the following chain reactions could occur [9]. $$N + CH_{x} - CN + xH , \qquad (f)$$ $$N + CN - C + N_2 , \qquad (g)$$ and are combined with the chemiluminescent reactions (d) and (e). In these conditions, the N and C atoms with [C]/[N] $\sim 10^{-2}$ - 10^{-3} are the dominant active species in the Ar-N₂ -CH₄ post-discharge with only few CN radicals. ### Correlations between active species and metal surface coatings in Ar-N₂-H₂ and Ar-N₂-CH₄ post-discharges Metallic surface nitriding is applied to improve surface properties such as resistance to corrosion, hardness, wear or fatigue by the development of thin surface layers (depth of $1\text{-}10\mu\text{m}$) having high resistance properties. Low pressure gas discharges (1-5 Torr) are commonly used for steel surface nitriding and carburizing in industrial reactors. In such plasma treatments, the sample is usually connected as a cathode of a glow discharge in flowing $N_2\text{-}H_2$ and $N_2\text{-}H_2\text{-}CH_4$ gas mixtures. It is to separate the contribution of ionic species such as N_2^* and that the neutral active species such as N_2 (V) vibrational excited molecules, N and C atoms, that the post-discharge reactor as reproduced in Fig. 1 has been setup. # 5.1 Metal surface coatings in Ar-N2-H2 post-discharges After post-discharge treatments of 1h at 840K in Ar- 1.4% N_2 at 50 Torr, a γ ' layer of $4\mu m$ with an ϵ layer of about $1\mu m$ was obtained as shown in Fig. 7a. The steel substrate is very sensitive to oxidation in the temperature range of Fig. 7 Micrographs of iron - 0,1% C layers after an 1 hour post-discharge treatment at 840K in 50 Torr-70W discharges. Diffracted X-ray intensity versus Bragg's angle θ at the surface of nitrided layers: a) Ar - 1.4% N_2 - 0.2% H_2 during the 1* 5 min. of treatment and Ar - 1.4% N_2 alone in the following. # b) Ar - 1.4% N_2 - 0.2% H_2 during all the treatment time. nitriding, resulting in part from water and air impurities inside the reactor. Thin iron oxides as Fe₃ 0_4 inhibit the nitriding reaction. To avoid it, small concentrations of H_2 gas $(0.2\%\ H_2$ in Ar-1.4% N_2 gas mixture) were introduced in the initial part of the treatment (2-3 min). But when H_2 flow was maintened during all the treatment time, a weaker γ' layer of 2 μ m and none ϵ - layer was obtained as shown in Fig 7b. Note that ϵ and γ' layer thickness in Fig. 7a and 7b was directly determined by measurements on micrographs or from $(110)\alpha$ and $(200)\gamma'$ intensity ratio of X diffraction pattern [1]. As shown in Fig. 5, a sharp decrease of N atoms is observed when small H₂ percentage is introduced into the Ar-N₂ discharge which can be related to a reduced γ' layer as shown in Fig. 7b. # 5.2 Metal surface coatings in Ar-N2-CH4 post-discharges A pure iron substrate has been treated at 840 K during 3h in the $Ar-N_2$ and $Ar-N_2-CH_4$ post-discharges at 44 Torr - 120 watts. Micrographs of these two treatments are reproduced in Fig. 8a for Ar - 11% N_2 and in Fig. 8b for Ar - 11% N_2 - 5 x 10^{-5} CH₄. It can be observed that a very small quantitie of CH₄ in N_2 strongly increases the thickness of Fe_{2.3} N- ϵ coating from 4-8 μ m to 20-22 μ m. Also it can be observed in the X-ray diagrams in figure 8a that Fe₃0₄ peaks are detected with Ar- 11% N₂ but not with Ar-11% N₂ -5 x 10⁻⁵ CH₄. Also the carbon atoms have not be detected in the ϵ - γ ' layers. It can be concluded that the Ar-11% N₂ - 5 x 10⁻⁵ CH₄ microwave discharge produced C and N atom densities : [C] \sim 10¹³ cm³ and [N] \sim 10¹⁵ cm³ in such a way that iron oxides are strongly reduced by C- atoms, allowing an efficient nitriding process (ϵ - layer of 20 μ m). Fig. 8 Micrographs of pure Fe samples after a 3 hours post-discharge treatment at 840 K in 44 Torr - 120W discharges. Diffracted X -ray intensity versus Bragg's angle θ at the surface of nitrided layers. - b) Ar 11% N₂ 5 x 10⁻⁵CH₄ #### 6. Conclusion Densities of N and C atoms have been determined in the post-discharge of Ar-N₂-H₂ and Ar-N₂-CH₄ flowing microwave discharges by emission spectroscopy. The N-atom density has been measured by N0 titration and the C-atom density has been deduced from the total band intensities which are emitted by the N + N and N + C recombination reactions. At a time $\Delta t \sim 10^{-1}$ sec in the post-discharge (40-50 Torr, 70-120 Watts), it has been found N atom densities in the order of 5 (\pm 1) x 10¹⁵ cm⁻³ for Ar-(1-10%) N₂ and C atom densities in the order of 10¹³ cm⁻³ for Ar - 11% N₂ - 5 x 10⁻⁵ CH₄. In these conditions ([N] $\sim 5 \times 10^{15} \text{ cm}^{-3}$, [C] $\sim 10^{13} \text{ cm}^{-3}$), where CN radicals are destroyed by N atoms, a high quality of iron nitrited layers has been obtained: 20 μm of ϵ - layer without oxides for a 3 hour treatment. With Ar-N₂ - H₂ gas mixtures the N atoms are weakly produced in the flowing discharge, in part due to a strong N₂ (V) + H₂ quenching, to allow a satisfactory production of ϵ and γ ' nitrided layers. #### 7. References - 1- RICARD, A., OSEGUERA, J., FALK, L., MICHEL, H., and GANTOIS, M., IEEE Trans. on Plasmas Sc. 18, 940., 1990. - 2- MALVOS, H., RICARD, A., MOISAN, M., and HUBERT, J., J. Physique 18, C 5-313., 1990. - 3- MOISAN, M., IEE Conf. Pub. 143, 382., 1976. - 4- RICARD, A., TETREAULT, J., and HUBERT, J., J. Phys. B24, 1115., 1991. - 5- PARTRIDGE et al., J. Chem. Phys. 88, 3174., 1988. - 6- LOFTHUS, A., KRUPENIE, P.H., J. Phys. Chem. Ref. Data 6, 113., 1977. - 7- CAMPBELL, I.M., and THRUSH, B.A., , Proc. Roy. Soc A 296, 201., 1967. - 8- LOUREIRO, J., Xth ESCAMPIG, 30 (Orleans)., 1990. To be published in J. Phy. B (1992). - 9- RICARD, A., MALVOS, H., BORDELEAU, S., and HUBERT J., ISPC 10 (Bochum)., 1991. - 10- TERESHCHENKO, E.N., and DODOVA, N.Y., Optics and Spectry. 39, 435., 1975. 11- WASHIDA, N., KLEY, D., BECKER, K.H., and GROTH, W., J. Chem. Phys. 63, 4230., 1975. Fig. 1 Microwave post-discharge reactor. Fig. 2 Fe-N phase diagram. Fig. 3 Intensities of NO_{β} and NO_{2}^{\bullet} bands versus N0 flow rate for N titration by N0. Fig. 4 I^{st} positive $N_2(B,V^{\prime}\text{-}A,V^{\prime\prime})$ intensity in Ar-(> 10%) N_2 post-discharge. Fig. 5 N- atom density versus $x/[N_2]$ in Ar-1.4% N_2 -x H_2 gas mixtures. <u>Fig. 6</u> CN(B,V' - X,V") emission intensity from olefin impurity in Ar-(>10%) N_2 post-discharge. <u>Fig. 7</u> Micrographs of iron - 0,1% C layers after an 1 hour post-discharge treatment at 840K in 50 Torr-70W discharges. Diffracted X-ray intensity versus Bragg's angle θ at the surface of nitrided layers: - a) Ar 1.4% N_2 0.2% H_2 during the 1st 5 min. of treatment and Ar 1.4% N_2 alone in the following. - b) Ar 1.4% N₂ 0.2% H₂ during all the treatment time. <u>Fig. 8</u> Micrographs of pure Fe samples after a 3 hours post-discharge treatment at 840 K in 44 Torr - 120W discharges. Diffracted X -ray intensity versus Bragg's angle θ at the surface of nitrided layers. - a) Ar 11% N₂ - b) Ar 11% N₂ 5 x 10⁻⁵CH₄