INFLUÊNCIA DE UM AMBIENTE REATIVO ATIVADO NAS PROPRIEDADES ELÉTRICAS DE FILMES DE In₂O₃:Sn.

L. R. O. Cruz e O. J. Santos Instituto Militar de Engenharia Seção de Engenharia Mecânica e de Materiais Praça General Tibúrcio, 80, Praia Vermelha 22290 - RIO DE JANEIRO - RJ - BRASIL

RESUMO:

Filmes finos de ${\rm In_2O_3}$: Sn foram obtidos pelo método de Evaporação Reativa Ativada. A técnica consiste em se evaporar o material na presença de um gás reativo ionizado (plasma).

Os filmes foram depositados a partir de uma liga In-Sn, com concentrações de estanho variáveis, na presença de oxigênio ionizado.

O trabalho tem como objetivo observar a in fluência do ambiente ionizado nas características elétricas dos filmes. Para isso, a nalisou-se a variação de propriedades elétricas tais como, mobilidade, concentração de portadores e resistividade, em função da corrente do plasma.

Análises comparativas realizadas entre amostras depositadas na presença e na ausên
cia de plasma permitiram concluir que o am
biente ionizado afeta as propriedades dos
filmes.

Filmes com resistividade da ordem de $10^{-3}\Omega$. cm e transmitância de 90% foram obtidos por esta técnica.

1. INTRODUÇÃO

Os filmes transparentes de óxido de índioestanho (ITO) têm sido muito estudados devido às suas propriedades que os fazem ú teis a diversas aplicações em optoeletrôn<u>i</u> ca. A técnica de evaporação reativa ativada (1) é uma alternativa atraente visto que ela fornece condições de deposição sobre substratos aquecidos a temperaturas relativa mente baixas.

Embora a bibliografia sobre filmes produzidos por esta técnica não seja extensa, Nathe Bunshah (2) obtiveram filmes de In_2O_3 e In_2O_3 : Sn de alta qualidade.

As características elétricas dos filmes de In₂O₃:Sn são dominadas basicamente pelas vacâncias de oxigênio (que contribuem com elétrons de condução) e átomos dopantes.

No presente trabalho investigou-se a influencia de um ambiente reativo ativado (plas ma) nas propriedades elétricas dos filmes de ITO.

2. PROCEDIMENTO EXPERIMENTAL

Os filmes de ITO foram preparados pela técnica de evaporação reativa ativada em um evaporador da Edwards modelo E19A3, com bombas mecânica e de difusão e armadilha de nitrogênio líquido. A técnica de preparação consistiu-se em evaporar uma liga de In-Sn na presença de oxigênio ionizado (3). A caracterização do plasma foi realizada a uma pressão de 10⁻² Torr, pela técnica de dois eletrodos de Langmuir (4). A pressão base do sistema era de 10⁻⁶ Torr. Atingida esta pressão iniciava-se o aquecimento len to do substrato, com temperaturas variando entre 150 e 400°C. Em seguida, oxigênio era

introduzido no sistema. A etapa inicial do experimento, consistiu-se em variar a pres são de oxigênio no sistema. Devido aos pa râmetros envolvidos na ionização, basicamente o tipo de fonte de ionização (A.C.) com voltagem máxima de 3000 volts e a geo metria dos eletrodos, obtinha-se um plasma estacionário somente com uma pressão to tal de 10-2 Torr. Sabe-se que esta pres são é muito elevada para o funcionamento da bomba de difusão. Este problema foi solucionado com o uso de um "by-pass",o qual aumentou a pressão base do sistema para 8x10- Torr. Esta pressão entretanto, limi tou muito a faixa de pressão de oxigênio a ser investigada. O oxigênio foi adicionado até que a pressão total atingisse o valor de 10-2 Torr. O gás era então ioniza do através de uma alta voltagem aplicada nos eletrodos de ionização. Em seguida, iniciava-se a evaporação.

As propriedades elétricas foram obtidas <u>a</u> través de medidas de efeto Hall e resist<u>i</u> vidade, realizadas à temperatura ambiente. Uma máscara mecânica limitou a região ut<u>i</u> zada para a deposição dos contatos elétr<u>i</u> cos de ouro.

3. RESULTADOS

As medidas de efeito Hall mostraram que os filmes eram do tipo-n.

Um estudo detalhado (3, 5) da variação das propriedades elétricas dos filmes com parâmetros de deposição tais como: distân cia fonte-substrato, temperatura do substrato, temperatura do substrato, temperatura do substrato e concentração de estanho na liga, permitiu otimizar o processo de obtenção das camadas.Os filmes de melhor qualidade foram aqueles depositados a 350°C, com uma distância fon te-substrato de 16 cm e com uma concentração de estanho na liga de 10 wt%.

As figuras la e lb mostram a variação das propriedades elétricas, de amostras depo-

sitadas a 290°C e 350°C, simultaneamente, com a corrente iônica do plasma. Os resultados referem-se às amostras depositadas a 16cm da fonte e a partir de uma liga com 10 wt% de estanho.

A resistividade permaneceu constante, em torno de $10^{-3}\Omega.$ cm, nas duas temperaturas de deposição. A concentração de portado - res decresceu inicialmente com o aumento da corrente iônica e a mobilidade aumen - tou na mesma região, tendendo a um valor constante.

Baseados nessas observações podemos sugerir que o ambiente reativo (plasma) tem a propriedade de aumentar a reação entre as espécies evaporantes e o gás. Um valor elevado da corrente iônica fornece filmes com composição próxima à estequiométrica. Este fato explica o decréscimo observado nos valores da concentração de portadores causado pelo decréscimo nas vacâncias de oxigênio.

É importante ressaltar que o plasma teve um efeito mais pronunciado nas propriedades dos filmes depositados a 290°C. Isto é esperado, visto que a mobilidade dos átomos na superfície do substrato mantido a 290°C é menor do que a dos átomos na su perfície a 350°C. Nesta situação (290°C), a energia dos átomos na superfície do substrato foi fornecida pelo plasma enquanto que a 350°C, os átomos já têm mobilidade suficiente na superfície do substrato. Sen do assim, a influência do plasma nas propriedades dos filmes obtidos a 350°C não é tão significativa.

A comparação das figuras la e lb mostra que a 290°C os valores de mobilidade e concentração de portadores foram da mesma ordem daqueles obtidos a 350°C, levando a valores de resistividade da ordem de 10⁻³Ω. cm em ambos os casos.

Figuras 2 e 3 mostram a dependência das propriedades elétricas, da temperatura do subs-

ela subs-

iva -

oduz<u>i</u> ,Nath ⁰3 e

es de pelas com

infl<u>u</u> (pla<u>s</u> imes

téc um com ha epaa de

da a de ssão gida len

ando era trato, de amostras depositadas a 16 cm da fonte e com uma liga com 10 wt% de estanho. A figura 2 mostra os dados obtidos a partir de amostras depositadas sem plasma enquanto que a figura 3 mostra os dados obtidos de amostras depositadas na presença de um plasma, com uma corrente iônica de 3,7µA.

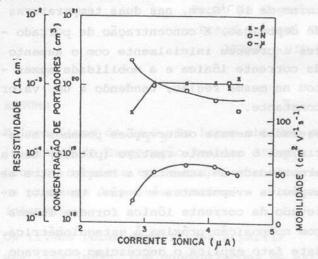


Fig. la - Variação da resistividade (ρ), concentração de portadores (N) e mobilidade (μ) com a corrente iônica, de filmes obtidos com uma temperatura de substrato de 290°C.

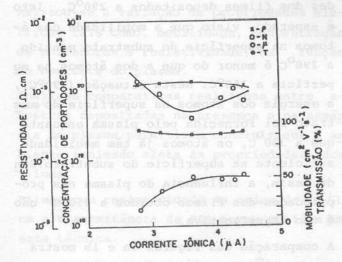


Fig. lb - Variação da resistividade (ρ), concentração de portadores (N), mobilidade (μ) e transmitância (T) com a corrente iônica, de filmes obtidos com uma tempera tura do substrado de 350oC.

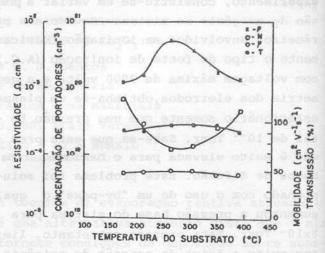


Fig. 2 - Variação da resistividade (ρ),con centração de portadores (N), mobilidade (μ) e transmitância (T)com a temperatura do substrato,de filmes obtidos sem plasma.

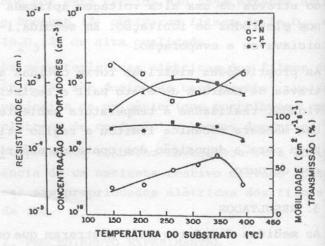


Fig. 3 - Variação da resistividade (ρ), con centração de portadores (N), mobilidade (μ) e transmitância (T) com a temperatura do substrato, de filmes obtidos com plasma a uma corrente iônica de 3,7μA.

Nas amostras depositadas sem plasma é observado um aumento na resistividade,o qual está relacionado com o decréscimo observado na concentração de portadores entre 150°C e 270°C. Entretanto, acima desta região de temperatura a resistividade decresce devido ao aumento na concentração de portadores. Este comportamento sugere que, inicialmente, a oxidação do filme foi favorecida pelo aumento da temperatura mas em tem-

peraturas mais elevadas, vacâncias de oxigênio começam a surgir.

Com respeito às amostras depositadas na presença do plasma, o comportamento das propriedades elétricas é muito similar àquele descrito acima. Entretanto, essas propriedades mostram uma dependência mais fraca da temperatura. Pode-se observar, também, que o valor da resistividade das amostras depositadas na presença de plasma é menor do que o das amostras obtidas na ausência de plasma evidenciando novamente o efeito do plasma.

4. CONCLUSÕES

As propriedades elétricas dos filmes de ITO mostraram ser dependentes das características do ambiente reativo ativado, como por exemplo, a corrente iônica.

O plasma tem o efeito de aumentar a reação entre as espécies, favorecendo a formação de filmes com a composição próxima à estequiométrica.

Embora a temperatura de substrato de 350° C tenha fornecido filmes com melhores propriedades elétricas, foi possível obter filmes com propriedades elétricas similares ($\rho \approx 10^{-3} \Omega.$ cm) com substratos mantidos a 290° C também na presença de plasma.

5. AGRADECIMENTOS

Este trabalho foi financiado pelo CNPq e pelo Ministério do Exército.

6. BIBLIOGRAFIA

- Bunshah, R.F.; "Process of the Activated Reactive Evaporation Type and their Tribological Applications"; <u>Thin Solid</u> Films, 107: 21-38, 1983.
- Nath, P. e Bunshah, R.F.; "Preparation of In₂O₃ and tin-doped In₂O₃ films by a novel activated reactive evaporation technique", <u>Thin Solid Films</u>, 69: 63 68 1980.

- Santos, O.J.; "Produção e Caracterização de Filmes de In₂O₃:Sn por Evaporação Reativa Ativada"; <u>Tese de Mestrado</u>; Instituto Militar de Engenharia, Rio de Janeiro, 1990.
- Langmuir, I.; Collected Works of Irwing Langmuir, 4-5; G. Suits (ed), Pergamon, Oxford, 1961.
- 5. Cruz, L.R.O. e Santos, O.J.; "Electri cal Properties of ITO Thin Films Deposi ted by Activated Reactive Evaporation", Material Letters, a ser publicado, 1991.