MEDIDAS DE GANHO EM LASER DE CO₂ CW DE BAIXA PRESSÃO.

N.A.S.Rodrigues, J.B.Chanes Jr e K.Jayaram CTA-IEAv - S.José dos Campos

Neste trabalho é apresentada uma série de medidas de ganho em laser de CO₂ CW de baixa pressão que foram realizadas com o propósito de estudar o comportamento de um amplificador laser de CO₂ com os parâmetros pressão e corrente de descarga. São também apresentados um modelo teórico, baseado em equações de taxa, usado para descrever o comportamento do laser e o procedimento experimental adotado.

Laser de CO2, ganho, física molecular.

1. INTRODUÇÃO

No laboratório de Lasers de Alta Potência (LAP) da Divisão de Laser estão sendo desenvolvidos vários tipos de la sers de CO2, entre contínuos e pulsados, e um parâmetro fun damental para a caracterização destes lasers é o ganho. O ganho, neste contexto, é encarado de modo similar ao ganho de circuitos eletrônicos, já que o laser é, a rigor, um amplificador de radiação.

2. O LASER DE CO.

O laser de CO₂ emite radiação no infravermelho, com / comprimentos de onda entre 9 e 11 µm, aproximadamente. As transições que caracterizam a emissão laser em CO₂ são vi - bracional-rotacionais entre níveis excitados próximos do estado fundamental.

2.1 ESPECTROS VIBRACIONAL E ROTACIONAL.

A molécula de CO₂ é uma molécula simples, linear e simétrica, cujo espectro de absorção, principalmente no infravermelho, é bem conhecido(Courtoy-1957). Possui três modos/ normais de vibração : estiramento simétrico, flexão dupla - mente degenerada e estiramento assimétrico (fig. 1), indica dos pela sequência de números $n_1 n_2^m n_3$, onde o índice m indica o momento angular associado ao modo de flexão.

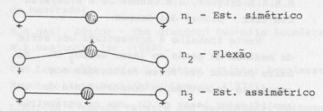


Fig. 1 Modos normais de vibração da molécula de CO2.

As principais transições onde ocorre emissão laser em CO_2 são: $00^{\circ}1 + 10^{\circ}0$, com $\lambda = 10.6 \ \mu m = 00^{\circ}1 + 02^{\circ}0$, com $\lambda = 9.6 \ \mu m$.

Como os níveis de interesse para ação laser em ${\rm CO_2}$ são níveis vibracionais próximos ao estado fundamental, pode-se descrever os espectros vibracional e rotacional através dos modelos de oscilador harmônico e rotor rígido, com boa precisão (Demaria-1973, Tychinskiy-1967).

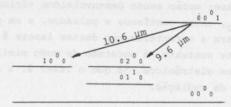


Fig. 2 Níveis vibracionais da molécula de ${\rm CO}_2$ de interesse na ação laser.

2.2 PROCESSOS DE EXCITAÇÃO E RELAXAÇÃO.

Dois processos são importantes na excitação da molécula de ${\rm CO}_2$: colisão com elétrons e transferência ressonante/de energia da molécula de ${\rm N}_2$ excitada em seu primeiro estado vibraconal para a molécula de ${\rm CO}_2$.

A adição de $\rm N_2$ no laser de $\rm CO_2$ é efetuada com a finalidade de aumentar a taxa de excitação do $\rm CO_2$ para o nível / $\rm 00^{\circ}1$, pois a energia da molécula de $\rm N_2$ excitada em seu pri-

meiro estado vibracional difere em apenas $18~\mathrm{cm}^{-1}$, portanto menos que KT, da energia do nível $00^{\mathrm{O}}1$ da molécula de CO_2 , favorecendo a transferência ressonante de energia entre estas moléculas. Além disso, a excitação do N_2 por colisão / com elétrons é mais eficiente que a excitação do CO_2 pelo mesmo processo (Nighan-1970, Lowke et al.-1973).

A relaxação dos níveis inferiores de laser ocorre principalmente por processos colisionais. A adição de He é efetuada com a finalidade de favorecer este processo (Taylor / et al.-1969, Levinson et al.-1969).

3. MODELO TEÓRICO.

A hipótese simplificadora para a construção do modelo/ teórico é considerar os estados excitados no modo de estira mento assimétrico $(00^{\circ}1,\ 00^{\circ}2,\ \text{etc.})$ como um mesmo nível, o nível superior do laser, e considerar os excitados nos modos $10^{\circ}0,\ 01^{1}0$ e $02^{\circ}0$ como um outro nível, o nível inferior do laser. A fig. 3 mostra esta hipótese simplificadora.

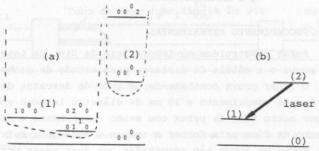


Fig. 3 a.) Hipótese simplificadora; b-) Modelo utilizado.

Esta hipótese é justificada pelo fato de haver um forte acoplamento entre as populações dos níveis indicados por (2) na fig.3, o mesmo ocorrendo entre as populações dos níveis indicados por (1) (Demaria-1973, Tychinskiy-1967, Du - ley-1976, Moore et al.-1967).

Desta maneira podemos escrever as equações de taxa para as populações dos níveis como

$$\dot{N}_2 = W_p N_0 - \frac{\sigma I}{h \nu} (N_2 - N_1) - \frac{N_2}{\tau_2}$$
 (1)

$$\dot{N}_{1} = \frac{\sigma I}{h \nu} (N_{2} - N_{1}) - \frac{N_{1}}{\tau_{1}}$$
 (2)

onde: N_i = população do i-ésimo nível; W_D = taxa de bombeamento;

 σ^{r} = secção reta de emissão estimulada (ou de absorcão)

hν = energia do fóton emitido ou absorvido;
I = intensidade da radiação no meio ativo;
τ, = tempo de vida do i-ésimo nível.

Chamando $\Delta N = N_2 - N_1$, e assumindo regime estacionário / de operação (CW), ou $N_2 = N_1 = 0$, obtém-se

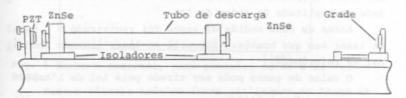
$$\Delta N = \frac{W_p N_0 \tau_2}{1 + \frac{\sigma I}{h \nu} (\tau_2 + \tau_1)}$$
(3)

e como o ganho é dado por

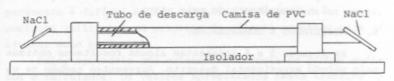
$$\alpha = \sigma \Delta N$$
 então (4)

$$\alpha = \frac{\sigma W_p N_0 \tau_2}{1 + \frac{\sigma I}{h \nu} (\tau_2 + \tau_1)}$$
 (5)

4. PROCEDIMENTO EXPERIMENTAL


Foram construidos no laboratório da Div. de Laser o la ser prova e a célula de descarga para estudo de ganho.

O laser prova consiste de um tubo de descarga de pyrex com 1 m de comprimento e 10 mm de diâmetro interno encamisa do por outro tubo de pyrex com mesmo comprimento e diâmetro interno de 20mm para formar a camisa d'água para refrigeração. Ambos os tubos são suportados por duas peças usinadas/de alumínio que são também os eletrodos da célula de descar ga. A vedação de vácuo entre os tubos e os eletrodos foi / feita por anéis de borracha. Duas janelas de ZnSe com reves timento antirrefletor são utilizadas para fechar o sistema, suportadas por flanges de nylon sobre anéis de borracha. A cavidade óptica utilizada consiste de uma grade de difração com 80 linhas/mm, quadrada com 15 mm de lado e um espelho / de acoplamento plano de germânio sem revestimento. A cavida de plano-plano não favorece a estabilidade de funcionamento do laser, mas no momento em que foram efetuadas as medidas/


não eram disponíveis espelhos esféricos de acoplamento.

Os eletrodos (devidamente isolados) e os suportes da / óptica de cavidade são fixos em um trilho de trem de 2 m de comprimento para estabilidade mecânica.

No anodo há um acoplamento para ligação com bomba de vácuo "PFEIFFER" modelo UNO-030-A. No catodo há um acopla - mento para entrada de mistura de gases (10% CO₂, 10% N₂ e / 80% He).

a-) Laser prova.

b-) Laser provado.

Fig. 4 Esquemas de montagem do a-)laser prova e b-) laser provado.

O sinal perdido pela grade de difração no laser prova, é lido por uma termopilha "COHERENT RADIATION" modelo 201 e, após convertido em sinal elétrico, é fornecido a um circuito de estabilização que controla o PZT sobre o qual está fixado o espelho de acoplamento.

A célula de descarga estudada foi construida de maneira bastante similar, com a diferença de que o tubo de descarga tem 1,5 m de comprimento e 15,6 mm de diâmetro interno; a camisa d'água é feita em tubo de PVC de 1 1/4" e o tubo interno é fechado por duas janelas de NaCl em ângulo /

de Brewster.

5. ARRANJO EXPERIMENTAL

Os dois lasers anteriormente descritos foram alinhados de modo que o feixe emergente do laser prova passasse pelo/laser provado e fosse lido por um detetor calorimétrico / "SCIENTECH" mod. 362. O sinal lido, transformado em sinal / elétrico pelo detetor, foi registrado em um registrador gráfico "HP" mod. 7046-A. O laser prova foi sintonizado na linha P(20) e operou com uma potência de 100 mW, com estabilidade em amplitude da ordem de 10%.

Antes de cada medida de ganho foi registrado o sinal de laser sem que houvesse descarga no laser provado como sinal de referência.

O valor de ganho pode ser tirado pela lei de L'Ambert

$$\alpha = \frac{1}{L} \ln(I/I_0) \tag{6}$$

onde:

I = Intensidade do sinal amplificado;

I₀= Intensidade do sinal de referência;

L = Comprimento do meio ativo.

6. RESULTADOS E COMENTÁRIOS.

As figuras 5 e 6 apresentam alguns resultados obtidos pelo método experimental descrito. Apresentam também os va lores teóricos calculados pelo modelo também descrito, indicados por linhas contínuas.

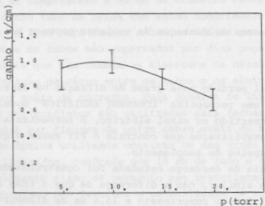


Fig. 5 Ganho x pressão, para uma corrente de 20 mA.

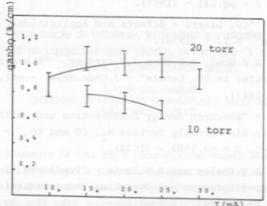


Fig. 6 Ganho x corrente, para pressões de 10 e 20 torr.

Para o cálculo teórico foram utilizadas as taxas de / bombeamento apresentadas por Nighan. As taxas de bombeamento dependem da energia dos elétros, e esta última depende / da relação campo elétrico por população (E/N). Este último/ parâmetro é difícil de ser calculado em descargas em gases, portanto utilizamos um programa de cálculo numérico para / ajustar este parâmetro.

Duley apresenta uma extensa referência de ganhos medidos e calculados. Os valores apresentados neste trabalho / concordam bastante bem com aqueles verificados em sistemas/ semelhantes.

AGRADECIMENTOS.

Agradecemos ao Dr. Reginaldo dos Santos, diretor do Instituto de Estudos Avançados, e ao Dr. Cesar C.Ghizoni , chefe da Divisão de Laser, pelo apoio incondicional.

8. REFERÊNCIAS.

- C.P.Courtoy -"Spectres de Vibration-Rotation de Molecules Simples Diatomique ou Polyatomique avec long Parcours / d'Absorption" - Can.J.Phys. - vol.35 - pg 608 - (1957).
- A.J.Demaria "Review of CW High-Power CO₂ Lasers" Proc. IEEE - vol.61 - pg.731 - (1973)-
- V.P. Tychinskiy "Powerful Gas Lasers" Sov. Ph. Usp.

- vol. 10 . no 2 pg.131 (1967).
- W.W.Duley "CO₂ Lasers Effects and Applications" Aca demic Press - N.Y. - (1976).
- C.B.Moore, R.E.Wood, B.L.Hu e J.T.Yardley "Vibrational/ Energy Transfer in CO₂ Lasers" - J.Chem.Phys. - vol.46 pg.4222 - (1967).
- W.L.Nighan "Electron Energy Distribution and Collisio nal Rates in Electrically Excited N₂, CO and CO₂" Phys. Rev. A vol. 2 pg.1989 (1970).
- J.J.Lowke, A.V.Phelps and B.W.Irwin "Predicted Electron Transport Coefficientes and Operating Characteristics of CO₂ - N₂ - He Lasers" - J.Appl.Phys. - vol. 44 . pg.4664-(1973).
- R.L.Taylor and S.Bitterman "Survey of Vibrational Relaxation Data for Processes Important in the CO₂ - N₂ Laser Sistem" - Rev.Mod.Phys. - vol. 41 - pg.26 - (1969).
- G.R.Levinson, A.N.Sviridov, V.P.Tychinskiy and V.G.Frolova -"Measurement of the Lifetimes of the 00°V System of Vibrational Levels of CO₂ Molecules" Rad.Eng.Elect.Phys. vol. 14 pg.580 (1969).

A.V. Denaria - Tayley of the Historyee Dis Laguery - Print