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A flux method for the analysis of the excess carrier trans-

port in multiple layer solar cells is described. This method avoids
the assumptions of the usual macroscopic device theory that the phy-
sical dimension of the system should be large ce¢mpared with the mean
free path of the excess carrier. In this amalysis the macroscopic
current is described in terms of the microscopic parameters of the
excess carrier 1ike mean free path, mean life time, and mean thermal
velocity. The general formalism, presented here, can be applied to
almost any type of solar cell structure. In the appropriate limits,
the results of this formalism are shownto reduce to those gbtained by

earlier restricted analysis.
1. INTRODUCTION

The usual macroscopic theory! used to solve the problem of
excess charge carrier transport in semiconductors involves the solu-
tion of the continuity equation together with a first order Boltzmann
transport equation. This theory is based on the assumption that the
mean free path of the charge carrier is much smaller than the physical
dimension of the transport region® In some very small scale devices
and also in the depletion layer of some solar cell® *, this condition
is not satisfied. In such cases one can question thE‘validity of
using the conventional macroscopic transport theory. In addition to

this, in a very narrow depletion layer, electric field intensity is
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yery high, which invalidates the first order Boltzmann transport

equatiun.

In order to avoid these difficulties McKelvey, Longini and
a;ody’ developed an alternative approach called flux method. Inicially
this method was developed for isotropic transport in systems with no
internal or external electric fields. Later on, the method was exten-
ded for nonisotropic transport in thé presence of electric field® *.
Recently this method has been applied to model surface barrier®~’ and
multiple junction solar cells®.

The flux method has the following advantages over the conven-

tional macroscopic theory:

£) It is applicable to systems where usual continuity equation
analysis is expected to break down. This occurs in systems
whose physical dimension is of the order of or smaller than

the mean free path of the charge carriers.

ii) It is easy to include the effects of scattering and absorption
processes in any part of the transport region and the effects

of boundary conditions at the surfaces and internal boundaries.

£4¢2) The form of the flux equations is identical in every part of
the transport region. Therefore, by determining the flux con-
tributions from any region of the device, one can immedialy
write down the expressions for the flux contribution from any
other region. This modular nature of the flux equations makes
it particularly more attractive for the multiple layer semi-
conductor dewvices.

iv) It provides an enhanced conceptual simplicity and physical
insight for the processes of scattering and absorption of

charge carrier in the bulk as well as at the surfaces.
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In this article we study the nonisotropic charge
carrier transport in a multiple layer semiconductor device in
the presence of a uniform electric field. The general formalism,
developed here; is an extension of ‘that of Hinckley, McCann
and Haneman®. Our formalism can be applied to any multiple
layer solar cell for example p-n homojunction, p-n
heterojunction, Schotlky barriers, and cascade solar cells etc.
We have applied this method to obtain charge carrier flux in a
single layer and found the results of earlier workers in

appropriate 1limits.
2. THE FLUX METHOD

2.1 - REFLECTION, TRANSMISSION, AND ABSORPTION COEFFICIENTS
IN A SEMICONDUCTING LAYER

The flux method describes the transport of charge
carriers by accounting the carrier flux as it proceeds thr;ugh
a layer of a semiconductor material of arbitrary thickness.
When the carrier flux, F01 is incident on the surface of "a
semiconducting layer as shown in Fig. 1, the carriers go
through a number of scattering and absorption processes. A part
of the flux, T (x) Fo» 1s transmitted through the opposite
side of the incident surface and another part, R (x) FortFaL
reflected towards the side of the incident surface. The
carrier flux,A (x) Fs which is neither transmitted nor re-
flected 1is absorbed inside the layer due to absorption
praocesses. In a semiconductor, absorption may occur either
through the processe of electron and hole recombination or

by trapping of charge carrier by trapping centers.
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Fig. 1 - Transport of the charge carrier flux F, incident
on a layer of thickness x.

The probability of reflection, transmission, and absorption
of an incident carrier flux are given by the specific coefficients
which can be easily derived?. Reflection and transmission coefficients
depend upon the thickness of the layer and on back scattering and
absorption probabilities. For carrier obeying the Maxwell Boltzmann

statistics, the back scattering probability ko, is?

e = (1)
4

where ) is the carrier mean free path. The absorption probability wus

ist

v = £ (2)
ct
where T is the carrier mean thermal velocity and v is the mean carrier
lifetime. For isotropic transport processes, the reflection and trans-
mission coefficients of a2 semiconducting layer of thickness x are gi-
ven, respectively, by equations?
ki sinh gox

Rlag, o, X) = —
gs cosh gox + (ae/qe)sinh ggx
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R t!qlx = B'qu}
- — (3)
g TR g 2 g =feX

and
1 bR
Ttl&: Qoo 1} - B » [4)
cosh aox + (a¢/qe)sinh gex ed0X _p 2 g=QoX

where

ag = kg + wg (5)

Qo? = ag% - ky? » (6)
and

ko 2¢ - Qo
R_ = lim R[ig, - [ I) = = (?}
X ap + Qo dg + Qo

In the presence of an electric field, the transport processes
are nonisotropic. In this case back scattering and absorption probabi-
lities are direction dz2pendent. To treat this case, we can express the
back scattering probability as k+ or k_ depending upon whether it des-
cribes the carrier transport parellel or antiparallel, respectively,
to the electric field direction. Similarly, the absorption probability
is written as w, or w_. In general,, the parameters kt and w, are posi=
tion dependent quantities for a nonuniform electric field. Since, here,
we consider a uniform electric field, we assume them to be position
independent quantities. In a uniform electric field, the reflection

and transmission coefficients are given as® *:

£
R,(x) = Rl g5 xJ (8)

k-d-
and
ks 2 G, q. &) (9)
whose
aa= % la, + a_) 5 (10)
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n--;-{a+-a_) . (11)

d oL@ - kKD (12)
and

a, = k!+m+ o (13)

The absorption coefficients A (x} can be written in terms of reflec-

tion and transmission coefficients as
Rt(x) =1 =R (x) - T,(x) i (14)
2.2 - FLUX RELATIONS IN MULTIPLE LAYER SOLAR CELL

In a solar cell, the flux of excess charge carriers is gene-
rated by solar radiations and thermal energy. To study the transport
of carrier flux in a multiple layer solar cell, we consider a solar
cell siructure of N homogeneous layers and N+1 boundaries as shown in
Fig. 2. The layers and the parameters relating to the individual layer
are denoted by the index i=1...N. The layer i is bounded by the boun-
daries i-1 and i and each boundary i is located at a distance z,; from
the front surface of the cell, The thickness of the layer i is denoted
by ¥, = Zi-25 4. The ith boundary is characterized by two reflection
coefficients R1= and two absorption coefficients &1:. The superscripts
plus and minus refer to the flux travelling parallel and antiparal-
lel to the electric field, respectively. The internal boundaries in a
solar cell may correspond to the junctions between two semiccnductors,
junctions between different doping levels in the same semiconductors,

or the boundaries between depletion and bulk layers etc.
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Fig. 2 - A multiple layer solar cell structure consisting of

N layers and N+1 boundaries.

We wish to derive an expression for the flux incident on the

kyh boundary 0 £k <i-1 due to the generation of excess carriers in the

ith layer. For doing this, first we shall calculate the flux incident

on the [1-1}th boundary. Let us assume that at any arbitrary point-x

in the ith layer, there exists a point generation source which in a

thin region of width dx generates carrier fluxes gi+(x] and g1h(1)

moving in the directions parallel and antiparallel to the directionof

electric field respectively. The exchange of carrier fluxes at the

points z;, x and z; , due to generation of fluxes gitlxldx at the

point x are shown in Fig. 3. The various fluxes shown in this figure

are related by the following set of equations:
dF; = Cqu1 9F5
. - - 1 +
dF,i = (1 - Ai 'Ri) df1 + R1 dFi s
+ +* - [}
df; = (1 - A7 -R]) dF; + Ry dfi
af; =R (z; - x)dfy + T _(z; - x)dF* "

dF = T (25 -x)df, + R_(z; - x)dF* + g; (x)dx

(15)
(16)
(17)
(18)

(19)
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dF' = R+{x-:i_1)dF + T_{x-zi_ildFi_| + g; (x)dx (20)

gty (" Tf[x-z,j-'}dF + R_{x-zi_|:ldF,i_| (21)

where c;+1 is defined as the effective reflection coefficient of the
(1+1]th layer as seen by the flux travelling towards left of the it"
layer. This reflection coefficient includes the effect of reflection
from the layers and boundaries extending from z, to the back surface

of the cell at Zy On solving Eqs. (15) and (16), we get

dF'- = Ti"E df; . (22)
where = i
b 1 - A7 - Rj
TiE : —_— (23)
- +
b ¥ Ll

-th

represents the effective transmission coefficient of the i boundary

for transport in the direction opposite to the electric field. The

.th

effective reflection coefficient R;E of the i boundary is obtained

by solving Egs. (15), (17) and (22). The simultaneous solution of
these equations gives

dfi = RiE df{ ; (24)

where

i = i Lt =
RiE = G {1 - ﬁi - R1) TiE + R_i . (25)
Now solving Eqs. (18), (19) and (24), we get

dF = R F(z, - x)dF' + g} (0dx (26)
where
T iz t=x) T Xzid xRy
RhE{zi -x) = R_(z;-x) + i B0 et 1€ (27)
: g Fl+(z_i - ix) R;E

is the effective reflection coefficient corresponding to the region
between the points zy and x. Finally, the simultaneous solution of Egs.

(20), (21) and (26) give the differential flux dF; arriving at the
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(i-l)th boundary in terms of the differential flux dFlt_.II leaving out

h

of the (i-l}t boundary towards left as

dE, g » cLdFg S v dg(x) (28)

i-1
where

E
T, (x -zi-|l T (x-2; 4) R “(z; - x) e

c; = R_{x -21_1} +

E
1 - R (x -zi_‘) R_"(z; - x)
and
(R_B(z;-x)g5(x) + gf(x)) T (x - 2, _,)dx

do{x) = (30)

1 - R (x-25,) R_E(:i - x)
In absence of any generating source, i.e, for the case gf{x) =0, if
we replace i by i+1 in Eq. (28), we see that c;*1 is also given by (29).
Hence Eq. (29) can be considered as the general expression for the
effective reflection coefficient of the gk layer for the charge car-
rier travelling opposite to the electric field. By substituting the
expressions for reflection and tragsmission coefficients from Egs. (8)

anrd (9) respectively in Eqs. (27), (29) and (30), we get

% . -2q;(z;-x)
- e
R 5(11-;] e L7 . e (31)
-2qi(zi-x).
1= ket Fn ®
-2qiY;
PRR N B
C; 3 1 == 1* [32}
=2q4Y
dro Bgoce Mg re aiti

aad
Ll %
dog) = ax{t Ry Ry TR, Cagtadea](x))x

= '{q‘i*‘“i)(x'zi-l)'RiA{g;(x}H“iﬂg;(x”’
e

!-Zqivi e‘“i"i){*“zi-l}} (33)
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where
Pl aenps
jwa iE
O (34)
LT
d
an b
Riwir- ;—-—— Rim = (35]
i*

In the absence of electric field, i.e, for isotropic transport when

Ky, = Kio» g; -g; and 8, =0, the above expressions (32) and (33) reduce

i
to the expressions obtaired earlier by Hinckley, McCann and Haneman®.
Integrating £q. (28) fromez, , to z,, we obtain a relation between the

fluxes F; 4 and Fo , as

ST I S TR (36)

where ¢, can be obtained by integrating Eq. (33).

E
* > %
R Ri_1
A% A%
L g (x)dx |g?(x}dx :
1
I dF
dF . | df. ldF i-1
1 5 1 ! —p !
|
s Ri[zi-x] | Rt(x—zi_1)
i-1 T_’{Zi'x) ! T+{£-Z‘i_1}
Pt Ml R (o e = —
] ] [ | 1
dF} |df! dF" ar:
I
I
z, x e
th

Fog. 3 - Distribution of fluxes in the i layer due to gene-

ration of fluxes g?(x] dxX
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Now we calculate the flux at any arbitrary ut boundary

(0 sk <i-1) due to the presence of a generating source of flux in the
ith Jayer. This can be done by calculating the flux incident at the

n boun-

f162)*" boundary and then iterating the procedure up to the Kt
dary. As shown in Fig. 4, the fluxes in the {1-I}th layer can be

obtained from the following flux equations

Rty B g e+ R R L (37)
fiogm TG F o + ROV, 1) £, ' (38)
fog = Riy fig # t1'- Aj_y - RT_y) Fy (39)
Fiog = Ty g0y + ROV GV Fip (40)

A simultaneous solution of the above Eqs. (37)-(40) gives the flux

F;_p incident on the (1-2)*" boundary as

+
T Ti-1e Tol¥qq)

E ! i-1
E; 5w R (Y55 )F + b . (41)
i-2 - i-1 j-2 - - i
Tiar V-Rige RU(Y,)
where
(42)

+ % +
Vot = L ilglgcRyly, b
By substituting the expressions for reflection and transmission coeffi-

cients from Eqs. (8) and (9) respectively, Eq. (41) can be simplified

to
-8 Y T
1 eI Yaly . i1
Fi2 = Siq Fia v 95 e s AE T, . (43)
i-1
where
- 2
Ti-i i Uitz R1_|
% %.1Y5-1 “A5_1Yi-1
Ll R T O L = Rictesli-1a® )
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Fig. 4 - Distribution of fluxes in the (i-1)*" layer.

By iterating the above procedure up to the (k-l}th layer, we

get the flux incident from the left on the k'M boundary as

F +
L P Sy s e Ly gy
e ) T e §as)
L

Here F; is the flux incident from the left on the k™" boundary and Fi'

is the flux moving to the left away from the Kth boundary. The super-
script i indicates that these fluxes are due to the presence of a ge-

nerating source of flux in the ith layer.

3. CURRENT-VOLTAGE CHARACTERISTICS

In solar cells we are interested in knowing the cell current
which can be calculated from the carrier flux going put of the front
surface of the solar cell. If we sum Eq. (45) over all values of i
from i =2 to N and then add the contribution of the first layer from

Eq. (36), we get the total flux F, reaching at the front surface as

N i1 -8,Y,T%
Foo=cy Fo+ 69+ I 4o { 3 E-% Tee T } (46)
i=2 £2=1 TE
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where Fo = ;F;. and Fp = fF51. Since Fy = R& Fo, the flux f,, going
i
out of the front surface towards the right, is given as

ot N L A e B
fite _'—+[¢1+_: 4y 1 [e ”_fTEE r‘f]] JrEray)
1-c¢/ Ry i=2 L= Tz

The quantities ¢.'s in the above Eq. (47) depend upon the ge-
nerating fluxes gf(x). which are generated by light as well as by ther-
mal energy. In thermal equilibrium (i.e, in the absence of external
electric field and light) the flux f, generated solely by the thermal

energy must be zero. Therefore Eq. (47) must be replaced by

Ta N I DE Y R i
f,:—_—-—+[‘+£ ¢; letl—fTEETz]
1-cl R3S i=2 ' fet T
el i R I 7 i
I [e ef 30 7 ]} ] : (48)
\ i=2 | fef ¥ Ea,

where Ey is the internal electric field in the thermal equilibrivm, E
is the electric field in the presence of light and ¢1T, contribution

to 4. due to thermal energy, is given by
ey g T (49)

Here ¢iL

i5 the contribution to L due to light.
The electric current in a solar cell is carried by electrons
4s well as by holes., The individual electron and hole currents are gi-
ven by the product of the electron charge and corresponding flux. The
total current J is equal to the sum of the electron and hole currents

h

J€ and J respectively,

JHJE-I‘Jhn-EfQE-f-Efgh (50,
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Here, superscript e and h indicate the contribution from the electrons
and holes respectively, Since the electric field E can be related to
the photovoltage, the above expression gives the current-voltage cha-
racteristic of any multiple layer solar cell. The electric field in

the expression (50) enters through the field dependent quantities k?,

*
34

4, EXAMPLE OF A SINGLE LAYER

and g?(x}.

In this section, we shall apply our fermalism to the simplest
case of a single layer and show that our results reduce to that of
Thomchik and Buoncristiani® and McKelvey and Baloch® in appropriate
limits. From Eq. (48), the outgoing flux f, in a single layer is
given as

+

¥
: {¢1L+¢1T- (¢4 ) E = Eo) (51)

fo = ——
1 - 4 Ry

In both papers of Thomchik snf Buoncristiani® and McKelvey and Baloch"
the transmission coefficient T,% is assumed to be 1. Therefore, in this

gase ToT/ (1 - ¢y Ret) reduces to 1.

Expressions of ¢1L and ¢|T can be obtained by integrating Eq.
(33). In general, these expressions of ¢1L and +1T are quite complica-
ted and in some cases ome requires to evaluate the integrals in Eq. (33)

numerically. However, under the following assumptions

1) Generating fluxes gfL{x) due to light are given as

LT3 -0, X
gy (x) = g7, (x) = r-zl gl (52)

where ¢ is the light flux striking the front surfacé of the layer and

oy is its absorption coefficients.

st

2) the effective reflection coefficient R;E due to the I boun-

dary ic equal to 1, we get the result of Thomchik and Buon-
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Buoncristiani as
L ba, 1 + R1_ 7

oy = .Y [ x
BEY: <5 {1k W 1711 * gy + 8¢ + a

-(q, +4, +a,)Y R,p(1 +R ) =2q,Y
¥ [,_e Vo il A ] ], fai? ScrREN
2% 4

(g, - &, -a,)Y
,[,_e et Pl ¢ 1]] (53)
“On the other hand, within the assumptions

1) the generating fluxes QTT{x) due to thermal energy are isotro-
pic and uniform, i.e. g:T(x) = g77(x) = g,7/2, where g . is

the constant generating flux due to thermal energy,

2) “;[ e R_.. i.e., on the left of the ISt boundary there is a

semiconducting layer of infinite width,
we get the integrated result of McKelvey and Balogh®

g (1 +R,_) -(q, + a,)Y
e o - PSR R (54)
Zlq1 + 11]



163

REFERENCES

FONASH, S.J. Solar cell device physics, Academic Press, New York,
NY, 1981.

McKELVEY, J.P.; LONGINI, R.L: and BRODY, T.P. Phys. Rev. 123
(1961) 51-57.

THOMCHIK, J. and BUONCRISTIANI, A.M. J. Appl. Phys. 51 (1980)
6265-6272.

McKELVEY, J.P. and BALOCH, J.C. Phys. Rev. 137 (1965) A1555-A1561.

THOMCHIK, 3. and BUONCRISTIANT. A.M. J. Apol. Phys. 52 (1981)
7296-7302

BUONCRISTIANI, A.M. and THUMCHIK. J. 16th IEEE Photovoltaic
Specialists Conference 1982, 485-489.

HINCKLEY, S.; McCANN, J.F. and HANEMAN, D. J. Appl. Phys. 43
(1983) 1955-1965.

HINCKLEY, S.; McCANN, J.F. and HANEMAN, D. Solar Cells17 (1986)
317-342.



