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ABSTRACT 
 
Important questions on a plasma etching system arises from 
gas flow issues. This article represents a first step to obtain 
a thorough understanding of the gas behaviour on a Hollow 
Cathode Plasma Etching system. According to this objec-
tive, the pressure performance within a Plasma chamber, 
and on a remote positions of the gas feed line were ana-
lysed. Experimental measurements were compared to the 
predictions originated from an analytic model. Excellent 
agreement between theoretical and experimental values was 
achieved. 
 
 
1. INTRODUCTION 
 
In the study of plasma processes vacuum technology is 
largely secondary in that it is part of other technologies that 
are central to analysis, research, development, and manufac-
turing [1]. Even though, it is of fundamental relevance on 
the plasma material processing. That is, In order to achieve 
a comprehensive description of the plasma phenomena it is 
paramount to develop, at first place, a solid understand of 
the gas phase behavior [2]. Aiming this goal, this article 
proposes a model for the pressure performance within the 
plasma vessel. This analysis employs the basic vacuum 
technology equations to obtain a set of formulas valid for 
the device in focus. 
Currently, a series of papers struggles to develop the space 
profile of electrons and ions densities inside a plasma envi-
ronment [3-4]. Nonetheless, these approaches disregard the 
influence of the gas profile. In general, they consider the gas 
pressure homogeneous through the entire vessel. It is rea-
sonable to proceed this way on large chamber, but it be-
comes inconvenient with respect to more complex structures 
as Hollow Cathode sources [5]. For the later is advisable to 
verify the contribution of the gas flow pattern to the plasma 
dynamic. Aware of this aspect, this article initiates a study 
of the gas phase in a plasma discharge, in order to analyze 
its influence on the plasma behavior. 
In this work we measure the dependence of the pressure in-
side a plasma chamber and in a remote position upstream 
the gas feed line, to the gas throughput into the system. In 
addition, an analytical model of the vacuum system, in terms 
of a differential equation system, was developed and it solu-
tion was compared with numerical calculations, based on a 
solution of the differential equation system through the 

Runge-Kutta method. Both results, analytical and numerical 
were compared to the experimental measurements. 
 
 
2. EXPERIMENTAL 
 
A schematic diagram of the experimental apparatus is 
shown in Figure 1. This apparatus consists of a cylindrical 
chamber with 170 mm radius and 400 mm long, connected 
to a gas feed line at one side and to a vacuum pump to the 
other. One pressure gauge is directly attached to the cham-
ber and another pressure gauge is connected to the gas line, 
through a small volume, upstream to the gas line. This con-
figuration aim to estimate the pressure inside a Hollow 
Cathode to be connected inside the chamber in future exper-
iments as already reported in previous articles [6]. Its pres-
ence on this work act as a support for further studies where 
the Hollow Cathode Chamber will be analyzed. 
The purpose of the small volume, of 30 mm radius and 50 
mm long, is to aloud the physical adjustment between the 
pressure measurement device and the gas line pipe. Prior to 
Ar feed the vacuum chamber is pumped down to a pressure 
below 10-6 torr (10-4 Pa) using a combination of a roots and 
a mechanical pump, providing both an effective pumping 
speed of approximately 100 L/s (0.1 m3/s). The argon gas 
was inserted in the chamber on a throughput range of 1 – 
100 sccm, corresponding to a pressure range of 0.04 – 15 
mtorr (0.005 – 2 Pa) on the vacuum chamber, and to a pres-
sure range of 8 – 80 mtorr (1 – 10 Pa) on the small volume. 
 

 
Figure 1 – Schematic diagram of experimental setup, where the 
principal vacuum system components are show. 
 
In order to assess the accuracy of the measured results an 
analytical model of this vacuum system was derived. With 
the support of this model, a fit of the experimental data was 
obtained. This model and the data analysis are presented on 
the next sections. 
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3. SYSTEM MODEL 
 

In order to obtain a mathematical treatment of the problem, 
a model as schematically demonstrated in Figure 2 was de-
veloped. To build up the model, the small volume used to 
promote the physical connection between the pressure gauge 
and the gas line was considered as being a second chamber 
linked to the plasma chamber through a long round tube. 

 

 
Figure 2 – Analog system to the experimental setup diagram-

matically exposed in Figure 1. 
 
 
Following this scheme there will be two differential equa-
tions to describe the pressure performance: one to each 
chamber [1]. These equations can be gathered on the differ-
ential equation system below, 
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where P1 represents the pressure inside the small volume, V1 
is its volume, P2 the pressure inside the plasma chamber, V2 
is the volume of this chamber, Q1 is the gas throughput to 
the vacuum system, Sp is the vacuum pump speed, and t is 
the time considered in the calculations. The parameter C‘ in 
the equation (1) is the amount of the tube conductance that 
doesn’t change with the pressure, that is [1], 
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where d represents the tube diameter, l is the tube long, and 
η corresponds to the gas viscosity. The differential equa-
tions in (1) govern the pressure behavior inside two cham-
bers connected through a pipe and are to be solved simulta-
neously to obtain the pressure dependence on the gas 
throughput in steady state. 
 
3.1. ANALYTICAL SOLUTION 

 
The ordinary differential equation (ODE) system in (1) 
doesn’t possess a closed form solution. Nonetheless, the 
pressure ratio P1/P2 can reach values of even to the fourth 
order of magnitude in steady-state. On this way it is reason-
able to consider P1 >> P2 in equilibrium. Taking this ap-
proximation in consideration, the ODE system can be writ-
ing as, 
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The solutions of this simplified system are, 
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where the parameters a = [(C’Q1)/2]1/2/V1 and b = Sp/(2V2) 
are employed to simplify the equations presentation. The 
constants C1 and C2 are integration constants. The pressure 
in the processing chamber P2 is given in form of Hipergeo-
metric Function [7], defined by, 
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where, αk = α (α + 1)… (α + k), βk = β (β + 1)… (β + k), γk 
= γ (γ + 1)… (γ + k). The Hipergeometric Function has as 
constrain that |z| < 1 to assure it convergence. Because of 
that, the validity of the solution obtained using the equation 
(5) is limited to time intervals close to the initial conditions. 
To find the particular solution of equations (4) and (5), suit-
able to the experimental conditions found in laboratory it is 
enough to verify that when t = 0, then P1(0) = P2(0) = P0, 
that is, the atmospheric pressure (P0 = 101,303.25 Pa). 
Then, the integration constants will be, 
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where s = aV1/C‘P0 and r = 2F1[1, (b/a); 1+(b/a); –(1+s)/(1-
s)]. Replacing these values on equations (4) and (5), 
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and, 
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The limitation related to the Hipergeometric Function con-
vergence implies that |[(1+s)/(1–s)]e2at| < 1. Thus the result 
expressed by equation (10) will be valid only for a small 
range of time, notably to the initials moments after the 
evacuation process begins. Nonetheless it equations can be 
used, with appropriate simplifications to gain more inside on 
the system behavior of the vacuum system after the steady-
state condition be achieved, as will be explained below. 
It is worthy to mention that the solutions represented by 
equations (9) and (10) are only valid to the pressure region 
where P1 >> P2. Thus, any results obtained from these equa-
tions to pressures close to atmospheric conditions are not 
representative. 

 
3.2. NUMERIC SOLUTION 

 
One possibility to find the numeric solution of a differential 
equation is obtained by means of a Runge-Kutta method. 
This computational method departs from the differential 
equation itself and the respective initial conditions. Based 
on this information it is possible to calculate the slope of the 
curve that represents the answer of the problem. When the 
calculation is done, the final output is a series of coordinates 
that represents graphically the solution. 
The employment of the Runge-Kutta method to a differen-
tial equation system is a little bit more evolving. In this case 
the equations must be solved simultaneously what, in a 
computational sense means that, on the calculation o each 
slope, information is needed on the current value of all the 
equations, not only on the equation the slope is been actual-
ly calculated. In the present problem, these complications 
leads to the calculation of two curves, representing the time 
variation of the pressure in each vessel. These curves were 
obtained based on the initial pressure that and on the differ-
ential equation itself. Then the slope of both curves was cal-
culated until the final time value was achieved. At this 
point, the program ends and presents the final result. The 
numeric solution obtained using this method is compared to 
the analytic one in order to verify the accuracy of the ap-
proximations used above. 

 
 

3.3. STEADY STATE 
 
In the vacuum system under study, the steady-state condi-
tion is achieved when the gas amount that enters a chamber 
equals the quantity that leaves it. On this situation, the 
throughput is constant through all the system. Considering 
the second chamber, that is, the reaction chamber, the 
throughput that leaves this vessel Q2out is given by the prod-
uct of the pressure inside this chamber and the pumping 
speed of the pump connected to it [1], 

 

22 PSQ pout ×=   (11) 

 
The gas that enters this chamber comes from the first cham-
ber through the tube. In this case, the throughput that enters 
the chamber Q2in is given by the very definition of a con-
ductance [1], 
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As the system is in steady-state, it follows that the through-
put of the gas entering the system must equals that of the 
gas leaving it. It means that Q2in = Q2out = Q2. It leads to the 
equality, 
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This expression can be further developed considering the 
Poiseuille-Hagen equation for long round tubes [1], 
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where, again, C‘ is the amount of the tube conductance that 
doesn’t change with the pressure, as defined in equation (2). 
Observing the definition of conductance expressed in (12), 
the conductance of a long round tube, in accordance with 
the equation above, can be written as, 
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Combining equations (13) and (15) yields, 
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The equation above is a second degree equation in P2. It can 
be readily solved using the Bhaskara Formula to result in, 
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This result can also be expressed in the form, 

 



40                                                                      F.M. Freitas et al.                                       Revista Brasileira de Aplicações de Vácuo 














−









 ′
+

′
= 11

21

2

2
1

2

2
p

p

S
PC

C
S

P  (18) 

 
Expanding the square root term using the binomial equation 
and disregarding higher order terms as long as, in steady-
state P1 << 1 and C’ and Sp have above the same order of 
magnitude, 
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Isolating P1 and considering equation (11), 
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Now, remembering that in steady-state the throughput is 
equal everywhere, it must follows that Q2 = Q1, what, con-
sidering equation (12), means that the pressures on the 
chambers will be, 
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This result can be confronted to the one obtained analytical-
ly. Considering equation (9), when t → ∞, that is, in steady-
state, tanh (at/2) → 1. This result in, 
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Substituting the value of the parameters s and a, 
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That is, 
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While in equation (10) as t → ∞, e- bt → 0, e- at → 0, e at / e at 
→ 1, and 2F1[1, (b/a); 1+(b/a); –C1 e at] → 0, what implies 
that, 
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That is, 
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That confirms the result obtained previously. 
 
 
4. RESULTS AND DISCUSSION 
 
With the goal of compare the analytical and the numerical 
solutions, a particular system, with operational conditions 
similar to those find in practice was simulated. It was con-
sidered that the initial pressure in both chambers was the 
atmospheric pressure, that is, 760 Torr (101,323.25 Pa). 
This procedure simulates the process, commonly performed 
in laboratory of evacuate a plasma system, prior to normal 
operation. In this evaluation, the pump speed was supposed 
to be of 50 L/s, a reasonable value encountered in high vac-
uum systems. The chambers dimensions was those present-
ed in section 2 of this article. In order to obtain a final pres-
sure in the system it was considered that all secondary gas 
sources, as outgassing, leaks, thermal transpiration, etc. sum 
up to a constant throughput of 0.1 sccm (2x10-4 Pa.m3/s). 

 

 
Figure 3 – Temporal variation of pressure in the two cham-

bers. In blue is the pressure in the small volume and in green is 
the pressure in the reaction chamber. 

 
 
Based on these constrains exposed above, two simulations 
were developed. The first considered the simplified system 
in differential equation (3); it is plotted on Figure 3. The se-
cond used the original set of equations in (1) and is show in 
Figure 4. As can be seen in the figures, both simulations re-
sulted in the same steady-state. The first graph differs from 
the second only for the value of the small chamber pressure 
at the high pressure region. It happens because the first sim-



v. 29, n. 1-2, 2010                                                   Pressure Behavior Analysis on a Hollow Cathode Plasma Etching System                            41 

ulation consider a set o equation that was obtained taking P1 
>> P2. This latter condition verifies only in the small pres-
sure region. This interpretation is confirmed by the unreal 
condition seen in Figure 3, where, for the first seconds of 
evacuation, the pressure in the small chamber was less than 
the pressure in the process chamber. This behavior doesn’t 
occurs in practice, and it appearance in this analysis reflect 
the weak assumption present in equation (3). 

 

 
Figure 4 – Temporal variation of pressure in the two cham-

bers. In blue is the pressure in the small volume and in green is 
the pressure in the reaction chamber. 

 
 

 
Figure 5 – Pressure performance in the small chamber. 

 
 
This analysis shows that the simplification adopted in equa-
tion (3) doesn’t affect the final result concerning the steady-
state condition, and is even irrelevant in respect to the pro-
cess chamber solution. Thus the choice of what set of equa-
tion to simulate, at least in this case, was immaterial. It se-
lection can be determinate by computational effort consider-
ations, and of course, if is intended to obtain only the final 
value or if the hole pressure time excursion is sought. 

The Figures 5 and 6 compares the analytical and the numer-
ical solutions directly. The blue solid line represents the 
numeric solution obtained as in Figures 3 and 4, using equa-
tion (1) for the numeric calculations, and the green solid line 
correspond to the analytical solution provided by equations 
(9) and (10), for the small chamber and the reactor chamber, 
respectively. 
 

 
Figure 6 – Pressure performance in the reactor chamber. 

 
 

The figures show that the results diverge most of the time 
(mainly in the small chamber), but in equilibrium conditions 
they are the same, irrespective the calculation was numeric 
or analytic. For Figure 6, the analytical result goes to infini-
ty after some time. This behavior is connected to the nature 
of the Hipergeometric Functions that converge only in a 
small region where |z| < 1, as defined by equation (6). The 
equation (10) possesses a Hipergeometric Function with the 
variable t as an argument. When this argument becomes 
greater than unity the Hipergeometric Function diverges 
and, as a result, the graphic of P2 tends to infinity, as show 
in the figure below. This phenomenon resides not only on 
the variable t. It depends on the equations parameters s and 
a too. Theses parameters are related to the initial pressure P0 
and the throughput Q1, what means that the Hipergeometric 
Function will converge only for a small range of values of 
initial pressure and throughput. For the simulation presented 
in this article it was choose a specific value for this con-
stants. The Figure 6 simply reflects a bad values choice. 
Theses output from this analysis lead to the conclusion that 
the numerical calculation, despite not given a closed solu-
tion, provide the accurate response through all the condi-
tions. The analytical calculation, on the other hand, is suited 
to final value calculations, as steady-state, and presents the 
advantage of supply a closed solution. This means that each 
approach is suitable in accord to the research needs. 
The equations (21) and (22) were used to predict the value 
of the pressure on the small chamber and in the reactor 
chamber as a function of the gas throughput in the system. 
The result was compared to the measured values obtained in 
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laboratory. The conclusion of this analysis, depicted in Fig-
ures 7 and 8 are quite satisfactory. 

 

 
Figure 7 – Pressure in the small volume. In red solid line is 

represented the predictions of equation (21). The dots repre-
sent experimental measurements. 

 
 
The experimental results adjusted well to the theoretical 
predictions. There is a small deviation only in the data from 
the reaction chamber pressure. This difference is caused by 
imperfections in the pressure gauge used to obtain the pres-
sure in this chamber. The metering device was wore what 
result in a poor confidence in its measurements. Nonetheless 
the experiment shows great coherence with the theory. 

 

 
Figure 8 – Pressure in the plasma chamber. In red solid line is 
represented the predictions of equation (22). The dots repre-

sent experimental measurements. 
 
 
 
 
 

5. CONCLUSIONS 
 
There are two aspects presented in this article. At first place 
it comprehends a discussion of the merits of the analytical 
approach versus the numeric calculations. Second, this pa-
per presents a comparison between a theoretical analysis of 
a vacuum system and its respective experimental counter-
part. 
In respect to its first goal, this work shows that both, the an-
alytical and the numerical solution has its own merits, and 
they are the best choice, depending on the researches needs. 
If the problem asks for a determination of a parameter value, 
in each point of the data range, then the numerical calcula-
tion is the best method. On the contrary, if only the steady-
state solution is required and adequate approximations are 
aloud, then an analytical solution is enough, as long as the 
problem has a closed solution. 
The second objective of this article consists in the verifica-
tion of the adequacy of the theoretical analysis in predict the 
behavior of a real vacuum system. The experimental analy-
sis in this article, due to technical limitations, was restricted 
to the steady-state condition. The results were in excellent 
agreement with the theory. Thus, the calculations done in 
this study succeed in describe the principle phenomena in-
volved. 
As a proposal to future studies, the author wishes to develop 
this analysis to investigate other characteristics of an exper-
imental Hollow Cathode Plasma Etching System. This work 
will comprehend the determination of phenomena specific 
to orifice gas flow. By understanding its behavior it will be 
possible to investigate the gas-plasma interaction that occurs 
in an actual Hollow Cathode Plasma. 
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