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ABSTRACT 2. FORMALISM 
  
We calculated  differential cross sections for scattering of 
low-energy electrons by CH4  and  SiH4  molecules. The 
calculations employed the Schwinger variational principle 
with plane waves as a trial basis set (J.L.S. Lino, M.A.P. 
Lima, Braz. J. Phys. 30, 432 (2000)).  Our differential cross 
sections   are found to be in good agreement with experi-
mental data and theoretical results. 

Details of the Schwinger variational principle have been dis-
cussed extensively elsewhere [5-8]. Here we will review a 
few steps in the development, which are essential to the pre-
sent discussion. 
In the SVP for electron-molecule elastic scattering, the bi-
linear form of the scattering is  
 
f (kf, ki) = - (1/2π){< Skf  | V|Ψ(+)  > + <Ψ(-) | V | Ski >-  

 < Ψ(-)  | V-VGV| Ψ(+)
  >}                                                     (1)   

1. INTRODUCTION                                                                                                                
 Here  | Ski > is the imput channel state represented by the 

product of a plane wave ki times, the initial (ground) target 
state. | Skf > has an analogous definition, except that the 
plane wave points to kf, V is the interaction between the in-
cident electron and the target, G ( or Go(+) ) is the projected 
Green’s function [8]. The scattering states | Ψ(+)  > and <Ψ(-) 

| are products of the target wave   function  | φ > and one-
particle scattering wave function. The initial step in our SVP 
calculations is to expand the one-particle scattering wave 
functions as a combination of plane waves. So, for elastic 
scattering, the expansion of the scattering wave function is 
done in a discrete form as  

The process of scattering of low-energy electrons by mole-
cules plays an important role in the description of cold 
plasmas that are currently used in technological applications 
[1]. For example, the dissociation cross sections of mole-
cules of the gas are fundamental in plasma etching and 
plasma enhanced vapor deposition [2].  It follows that the 
knowledge of   elastic and inelastic cross sections for a wide 
range of molecular systems is a very important subject.   
Several methods have been developed as the Schwinger 
multichannel method  (SMC) [3], the Kohn variational 
method [3] and R-Matrix [3]. We have previously discussed 
the Schwinger variational principle (SVP) for electron-
molecule collisions and to account for polarization effects 
and multichannel coupling (due to inelastic processes in-
volving energetically open electronic excited process), were 
introduced modifications into the SVP and created the so-
called Schwinger multichannel method (SMC) [3]. The 
main limitation of the SMC method resides on what makes 
it a general method: the expansion of the scattering func-
tions is done in a L2  basis (Cartesian Gaussian functions) 
and this is effective only for short-range potentials. An im-
portant development of the method would be to allow inclu-
sion of plane waves (PW) in the scattering basis. Recently 
we have presented some studies of the Schwinger varia-
tional principle with plane waves as a trial basis set (SVP-
PW) where we have tested the  Born-Ochkur approximation 
to include the effect of electron exchange [4-7]. In this pa-
per we present elastic differential cross sections for e- -CH4, 
and e- -SiH4   scattering.  

 
| Ψ(+)  > =     ∑  am (km)| φ km > 
 
| Ψ(-)  > =     ∑  an (kn) | φ kn >               
(2) 
 
The inclusion of these definitions in Eq.(1) and the applica-
tion of a stationarity condition with respect  to the coeffi-
cients, gives the working form of the scattering amplitude: 
 
f (kf, ki) =  - (1/2π ) x [ ∑<Skf |V|φkm>(d-1)mn x <knφ|V|Skf > ] 
 
where: 
 
dmn = < φkm  | V – VGV | φ|kn >          (3) 
 
 We have implemented a set of computational codes to 
evaluate all matrix elements. The Green’s function and its 
associated discontinuities have been examined and treated in  
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As observed, our results are very similar with experimental 
and theoretical results.  In figure 5 we have shows DCS at 
10 eV compared with experimental data [19] and theoretical 
results [20].   

a similar way as in the subtraction method [9-11]. We have 
considered the effect of including exchange in the SVP-PW 
by replaning first Born approximation fFBA by f FBA + g 
where “g” is the Born-Ochkur exchange amplitude [12] and 
our main interest is to check if the SVP-PW plus Born-
Ochkur approximation is capable of describing the struc-
tures in the differential cross sections (DCS). 
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3. RESULTS 
 
As a first application of our formulation we have calculated 
elastic differential cross sections (DCS) for electron-impact 
energies of 12.5, 15.4, and 30 eV for CH4, 7.5 and 15 eV for 
SiH4. We have used Hartree-Fock calculations to represent 
the ground state of Methane and Silane with the same Carte-
sian Gaussian basis set expansion used in previous calcula-
tions [13-15]. Figure 1 shows our DCS at 12.5 eV for elec-
tron-Methane and we have compared with experimental data 
[16] and theoretical cross sections as the Schwinger mul-
tichannel method [17].  As noted, at 12 eV the SVP-PW 
have a good agreement with experimental and theoretical 
results. In figure 2 (at 15. 4 eV) for comparison we have 
also included the  Schwinger  variational iterative method 
(SVIM) using exchange plus polarization  effects [17] and  
as observed our DCS agree well with the SIVM results. Fig-
ure 3 shows our DCS at 30 eV with experimental data [16] 
and the iterative Schwinger variational method [17].  The 
comparison between our results and theoretical and ex-
perimental results    are very similar. For the SiH4    in figure 
4, we have shows DCS at 7.5 eV compared with the 
Schwinger multichannel method-SMC (using exchange ef-
fects) [18] and experimental data [19]. 

Figure 2 - Elastic differential cross sections for electron- CH4 
at 15.4 eV. Solid line (SVP-PW),  Dashed line (Schwinger  

variational iterative method of Ref [18]). 
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Figure 3 - Elastic differential cross sections for electron- CH4 
at 30 eV. Solid line (SVP-PW), Star (experimental results of 
Ref. [16]), Dashed line (Schwinger  variational iterative  me-

thod of Ref [18]). 
 
 
 
4. CONCLUSION 
 Figure 1 - Elastic differential cross sections for electron- CH4 

at 12 eV. Solid line (SVP-PW), Star (experimental results of 
Ref. [16]), Dashed line (Schwinger  multichannel  method of 

Ref [18]). 

We have presented calculations for elastic differential cross 
sections for CH4   and SiH4 by electron impact.  Our results 
are, in general, in good agreement with experimental and 
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other theoretical methods.  The present study helps to dem-
onstrate the utility of SVP-PW to molecular systems. 
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Figure 4 - Elastic differential cross sections for electron- SiH4 
at 7.5 eV. Solid line (SVP-PW), Star (experimental results of 

Ref. [19]), Dashed line (Schwinger  multichannel method of Ref 
[20]). 
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Figure 5 - Elastic differential cross sections for electron- SiH4 
at 10 eV. Solid line (SVP-PW), Star (experimental results of 

Ref. [19]), Dashed line (Schwinger  multichannel method of Ref 
[18]), Dashed line with square (rotationally summed results of 

Ref. [19]). 
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